互强凸函数的夹心定理

Q4 Mathematics
M. Bracamonte, J. Gimenez, J. Medina
{"title":"互强凸函数的夹心定理","authors":"M. Bracamonte, J. Gimenez, J. Medina","doi":"10.15446/RECOLMA.V52N2.77157","DOIUrl":null,"url":null,"abstract":"We introduce the notion of reciprocally strongly convex functions and we present some examples and properties of them. We also prove that two real functions f and g, defined on a real interval [a, b], satisfy for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a reciprocally strongly convex function h : [a, b] → R such that f (x) ≤ h(x) ≤ g(x) for all x ∈ [a, b]. Finally, we obtain an approximate convexity result for reciprocally strongly convex functions; namely we prove a stability result of Hyers-Ulam type for this class of functions.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sandwich theorem for reciprocally strongly convex functions\",\"authors\":\"M. Bracamonte, J. Gimenez, J. Medina\",\"doi\":\"10.15446/RECOLMA.V52N2.77157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of reciprocally strongly convex functions and we present some examples and properties of them. We also prove that two real functions f and g, defined on a real interval [a, b], satisfy for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a reciprocally strongly convex function h : [a, b] → R such that f (x) ≤ h(x) ≤ g(x) for all x ∈ [a, b]. Finally, we obtain an approximate convexity result for reciprocally strongly convex functions; namely we prove a stability result of Hyers-Ulam type for this class of functions.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RECOLMA.V52N2.77157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RECOLMA.V52N2.77157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

引入了互强凸函数的概念,给出了它们的一些例子和性质。我们还证明了定义在实区间[a, b]上的两个实数函数f和g,满足对所有x, y∈[a, b]和t∈[0,1],如果存在一个互强凸函数h: [a, b]→R使得对所有x∈[a, b], f (x)≤h(x)≤g(x)。最后,我们得到了互强凸函数的一个近似凸性结果;即证明了该类函数的Hyers-Ulam型的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sandwich theorem for reciprocally strongly convex functions
We introduce the notion of reciprocally strongly convex functions and we present some examples and properties of them. We also prove that two real functions f and g, defined on a real interval [a, b], satisfy for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a reciprocally strongly convex function h : [a, b] → R such that f (x) ≤ h(x) ≤ g(x) for all x ∈ [a, b]. Finally, we obtain an approximate convexity result for reciprocally strongly convex functions; namely we prove a stability result of Hyers-Ulam type for this class of functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信