Van Duc Nguyen, V. D. Duong, Minh Hoang Trinh, Hoang Quan Nguyen, Dang Thai Son Nguyen
{"title":"基于涡粒子法和动力模态分解的动态失速低阶建模","authors":"Van Duc Nguyen, V. D. Duong, Minh Hoang Trinh, Hoang Quan Nguyen, Dang Thai Son Nguyen","doi":"10.1177/17568293221147923","DOIUrl":null,"url":null,"abstract":"Low order modelings are performed in this paper, including iterative Brinkman penalized vortex method (IBVM) and data-driven dynamic mode decomposition (DMD) for dynamic stall study of symmetric airfoil. The data are extracted from IBVM as input for flow field reconstruction using combinations of DMD dominant modes, representing extracted flow features. The primary mode together with its harmonics, and the mean mode are termed to be dominant for the airfoil wake duplication at fixed angles of attack ([Formula: see text]) ranging from [Formula: see text] to [Formula: see text]. For the dynamic stall duplication, at small and large pitching amplitudes, the nearfield and farfield vorticty contours from the DMD generally agree well with those from the IBVM. In addition, the lift coefficient from the DMD collapses well with that from the IBVM and the experiment.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low order modeling of dynamic stall using vortex particle method and dynamic mode decomposition\",\"authors\":\"Van Duc Nguyen, V. D. Duong, Minh Hoang Trinh, Hoang Quan Nguyen, Dang Thai Son Nguyen\",\"doi\":\"10.1177/17568293221147923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low order modelings are performed in this paper, including iterative Brinkman penalized vortex method (IBVM) and data-driven dynamic mode decomposition (DMD) for dynamic stall study of symmetric airfoil. The data are extracted from IBVM as input for flow field reconstruction using combinations of DMD dominant modes, representing extracted flow features. The primary mode together with its harmonics, and the mean mode are termed to be dominant for the airfoil wake duplication at fixed angles of attack ([Formula: see text]) ranging from [Formula: see text] to [Formula: see text]. For the dynamic stall duplication, at small and large pitching amplitudes, the nearfield and farfield vorticty contours from the DMD generally agree well with those from the IBVM. In addition, the lift coefficient from the DMD collapses well with that from the IBVM and the experiment.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293221147923\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221147923","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Low order modeling of dynamic stall using vortex particle method and dynamic mode decomposition
Low order modelings are performed in this paper, including iterative Brinkman penalized vortex method (IBVM) and data-driven dynamic mode decomposition (DMD) for dynamic stall study of symmetric airfoil. The data are extracted from IBVM as input for flow field reconstruction using combinations of DMD dominant modes, representing extracted flow features. The primary mode together with its harmonics, and the mean mode are termed to be dominant for the airfoil wake duplication at fixed angles of attack ([Formula: see text]) ranging from [Formula: see text] to [Formula: see text]. For the dynamic stall duplication, at small and large pitching amplitudes, the nearfield and farfield vorticty contours from the DMD generally agree well with those from the IBVM. In addition, the lift coefficient from the DMD collapses well with that from the IBVM and the experiment.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.