{"title":"关于沿理想的并合环的一个注记","authors":"M. Nowakowska","doi":"10.2478/amsil-2021-0010","DOIUrl":null,"url":null,"abstract":"Abstract Ring properties of amalgamated products are investigated. We offer new, elementary arguments which extend results from [5] and [12] to noncommutative setting and also give new properties of amalgamated rings.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"282 - 288"},"PeriodicalIF":0.4000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Amalgamated Rings Along an Ideal\",\"authors\":\"M. Nowakowska\",\"doi\":\"10.2478/amsil-2021-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ring properties of amalgamated products are investigated. We offer new, elementary arguments which extend results from [5] and [12] to noncommutative setting and also give new properties of amalgamated rings.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"282 - 288\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2021-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2021-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Ring properties of amalgamated products are investigated. We offer new, elementary arguments which extend results from [5] and [12] to noncommutative setting and also give new properties of amalgamated rings.