口服克拉霉素非离子表面活性剂纳米囊泡的合成

IF 1.2 4区 工程技术 Q4 CHEMISTRY, APPLIED
I. Ali, Sarzamin Khan, Samrein Ahmed, Serab Khan, H. Ali, Raiz Ullah Shafiullah, M. Shah, Z. A. Shah
{"title":"口服克拉霉素非离子表面活性剂纳米囊泡的合成","authors":"I. Ali, Sarzamin Khan, Samrein Ahmed, Serab Khan, H. Ali, Raiz Ullah Shafiullah, M. Shah, Z. A. Shah","doi":"10.1515/tsd-2022-2476","DOIUrl":null,"url":null,"abstract":"Abstract In order to improve the solubility and bioavailability of poorly water-soluble drugs, the synthesis of cost-effective nonionic surfactants has been the subject of greater scientific interest. The present study focuses on the synthesis of sulfonyl chloride derivatives as nonionic surfactants (surfactant 1 and surfactant 2) and their evaluation for the preparation of a clarithromycin-loaded niosomal drug delivery system. Surfactants 1 and 2 were characterised by EI-MS and 1H NMR spectroscopy. The shape and size of the drug-loaded niosomal vesicles from the synthesised surfactants were examined by atomic force microscopy (AFM) and revealed a round morphology with an average size of (230.8 ± 2.35) nm and (248.1 ± 2.54) nm for the vesicles of surfactant 1 and surfactant 2, respectively. The zeta potential of surfactant 1-based niosomal vesicles was (– 7.70 ± 1.00) mV and that of surfactant 2 was (−14.6 ± 1.08) mV. The lower zeta potential values for surfactant 1 and surfactant 2-based niosomal vesicles showed that these vesicles were neutral and relatively stable. The vesicles of surfactant 1 and 2 have a capacity to entrap the drug of about (62 ± 2.26) % and (69.67 ± 3.23) %, respectively. The vesicles of surfactant 1 released the largest amount of drug, i.e. (70.00 ± 2.45) % at pH 1.2. Biocompatibility in human blood and toxic effects on various cell lines were also studied for surfactants 1 and 2, and they were found to be biocompatible and non-cytotoxic.","PeriodicalId":22258,"journal":{"name":"Tenside Surfactants Detergents","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of non-ionic surfactants nano-vesicles for clarithromycin oral delivery\",\"authors\":\"I. Ali, Sarzamin Khan, Samrein Ahmed, Serab Khan, H. Ali, Raiz Ullah Shafiullah, M. Shah, Z. A. Shah\",\"doi\":\"10.1515/tsd-2022-2476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to improve the solubility and bioavailability of poorly water-soluble drugs, the synthesis of cost-effective nonionic surfactants has been the subject of greater scientific interest. The present study focuses on the synthesis of sulfonyl chloride derivatives as nonionic surfactants (surfactant 1 and surfactant 2) and their evaluation for the preparation of a clarithromycin-loaded niosomal drug delivery system. Surfactants 1 and 2 were characterised by EI-MS and 1H NMR spectroscopy. The shape and size of the drug-loaded niosomal vesicles from the synthesised surfactants were examined by atomic force microscopy (AFM) and revealed a round morphology with an average size of (230.8 ± 2.35) nm and (248.1 ± 2.54) nm for the vesicles of surfactant 1 and surfactant 2, respectively. The zeta potential of surfactant 1-based niosomal vesicles was (– 7.70 ± 1.00) mV and that of surfactant 2 was (−14.6 ± 1.08) mV. The lower zeta potential values for surfactant 1 and surfactant 2-based niosomal vesicles showed that these vesicles were neutral and relatively stable. The vesicles of surfactant 1 and 2 have a capacity to entrap the drug of about (62 ± 2.26) % and (69.67 ± 3.23) %, respectively. The vesicles of surfactant 1 released the largest amount of drug, i.e. (70.00 ± 2.45) % at pH 1.2. Biocompatibility in human blood and toxic effects on various cell lines were also studied for surfactants 1 and 2, and they were found to be biocompatible and non-cytotoxic.\",\"PeriodicalId\":22258,\"journal\":{\"name\":\"Tenside Surfactants Detergents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenside Surfactants Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tsd-2022-2476\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenside Surfactants Detergents","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tsd-2022-2476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了提高水溶性差的药物的溶解度和生物利用度,合成具有成本效益的非离子表面活性剂一直是科学界关注的课题。本研究的重点是作为非离子表面活性剂的磺酰氯衍生物(表面活性剂1和表面活性剂2)的合成及其在制备克拉霉素负载的羊膜给药系统中的评价。表面活性剂1和2通过EI-MS和1H NMR光谱进行表征。通过原子力显微镜(AFM)检查了合成的表面活性剂负载药物的囊泡的形状和大小,发现表面活性剂1和表面活性剂2的囊泡具有圆形形态,平均大小分别为(230.8±2.35)nm和(248.1±2.54)nm。表面活性剂1和表面活性剂2的ζ电位分别为(–7.70±1.00)mV和(−14.6±1.08)mV。表面活性剂和表面活性素2的较低ζ电位值表明这些囊泡是中性且相对稳定的。表面活性剂1和2的囊泡对药物的截留率分别为(62±2.26)%和(69.67±3.23)%。表面活性剂1的囊泡在pH 1.2时释放出最大量的药物,即(70.00±2.45)%。还研究了表面活性剂1和2在人体血液中的生物相容性以及对各种细胞系的毒性作用,发现它们具有生物相容性和非细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of non-ionic surfactants nano-vesicles for clarithromycin oral delivery
Abstract In order to improve the solubility and bioavailability of poorly water-soluble drugs, the synthesis of cost-effective nonionic surfactants has been the subject of greater scientific interest. The present study focuses on the synthesis of sulfonyl chloride derivatives as nonionic surfactants (surfactant 1 and surfactant 2) and their evaluation for the preparation of a clarithromycin-loaded niosomal drug delivery system. Surfactants 1 and 2 were characterised by EI-MS and 1H NMR spectroscopy. The shape and size of the drug-loaded niosomal vesicles from the synthesised surfactants were examined by atomic force microscopy (AFM) and revealed a round morphology with an average size of (230.8 ± 2.35) nm and (248.1 ± 2.54) nm for the vesicles of surfactant 1 and surfactant 2, respectively. The zeta potential of surfactant 1-based niosomal vesicles was (– 7.70 ± 1.00) mV and that of surfactant 2 was (−14.6 ± 1.08) mV. The lower zeta potential values for surfactant 1 and surfactant 2-based niosomal vesicles showed that these vesicles were neutral and relatively stable. The vesicles of surfactant 1 and 2 have a capacity to entrap the drug of about (62 ± 2.26) % and (69.67 ± 3.23) %, respectively. The vesicles of surfactant 1 released the largest amount of drug, i.e. (70.00 ± 2.45) % at pH 1.2. Biocompatibility in human blood and toxic effects on various cell lines were also studied for surfactants 1 and 2, and they were found to be biocompatible and non-cytotoxic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tenside Surfactants Detergents
Tenside Surfactants Detergents 工程技术-工程:化工
CiteScore
1.90
自引率
10.00%
发文量
57
审稿时长
3.8 months
期刊介绍: Tenside Surfactants Detergents offers the most recent results of research and development in all fields of surfactant chemistry, such as: synthesis, analysis, physicochemical properties, new types of surfactants, progress in production processes, application-related problems and environmental behavior. Since 1964 Tenside Surfactants Detergents offers strictly peer-reviewed, high-quality articles by renowned specialists around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信