地震激励下分段管道的物理修复率曲线

IF 2.7 Q2 ENGINEERING, CIVIL
L. Iannacone, P. Gardoni
{"title":"地震激励下分段管道的物理修复率曲线","authors":"L. Iannacone, P. Gardoni","doi":"10.1080/23789689.2021.2000146","DOIUrl":null,"url":null,"abstract":"ABSTRACT Current approaches to assess the reliability and resilience of water infrastructure subject to seismic hazard typically use Repair Rate (RR) curves for the linear elements (pipelines), which estimate the expected number of repairs needed per unit length after the occurrence of an earthquake of a given intensity. The available RR curves are characterized by high levels of uncertainty being based primarily on expert judgment and on limited data. Also, they provide no distinction between the damage on the segments and on the joints. This paper develops probabilistic physics-based RR curves to quantify the damage to segmented pipelines due to earthquakes. First, a mechanical model for segmented pipelines is proposed. The model is then used to generate a set of synthetic data for the calibration of the model parameters. We compare the proposed RR curves with the ones available in the literature and discuss the advantages of the proposed model.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"8 1","pages":"121 - 141"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Physics-based repair rate curves for segmented pipelines subject to seismic excitations\",\"authors\":\"L. Iannacone, P. Gardoni\",\"doi\":\"10.1080/23789689.2021.2000146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Current approaches to assess the reliability and resilience of water infrastructure subject to seismic hazard typically use Repair Rate (RR) curves for the linear elements (pipelines), which estimate the expected number of repairs needed per unit length after the occurrence of an earthquake of a given intensity. The available RR curves are characterized by high levels of uncertainty being based primarily on expert judgment and on limited data. Also, they provide no distinction between the damage on the segments and on the joints. This paper develops probabilistic physics-based RR curves to quantify the damage to segmented pipelines due to earthquakes. First, a mechanical model for segmented pipelines is proposed. The model is then used to generate a set of synthetic data for the calibration of the model parameters. We compare the proposed RR curves with the ones available in the literature and discuss the advantages of the proposed model.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":\"8 1\",\"pages\":\"121 - 141\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2021.2000146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2021.2000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6

摘要

摘要当前评估遭受地震灾害的水利基础设施可靠性和恢复力的方法通常使用线性元件(管道)的修复率(RR)曲线,该曲线估计了给定强度地震发生后每单位长度所需的预期修复次数。可用的RR曲线具有高度的不确定性,主要基于专家判断和有限的数据。此外,它们在节段和接头上的损伤之间没有区别。本文开发了基于概率物理学的RR曲线,以量化地震对分段管道的破坏。首先,提出了分段管道的力学模型。然后使用该模型来生成用于校准模型参数的一组合成数据。我们将所提出的RR曲线与文献中可用的RR曲线进行了比较,并讨论了所提出模型的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-based repair rate curves for segmented pipelines subject to seismic excitations
ABSTRACT Current approaches to assess the reliability and resilience of water infrastructure subject to seismic hazard typically use Repair Rate (RR) curves for the linear elements (pipelines), which estimate the expected number of repairs needed per unit length after the occurrence of an earthquake of a given intensity. The available RR curves are characterized by high levels of uncertainty being based primarily on expert judgment and on limited data. Also, they provide no distinction between the damage on the segments and on the joints. This paper develops probabilistic physics-based RR curves to quantify the damage to segmented pipelines due to earthquakes. First, a mechanical model for segmented pipelines is proposed. The model is then used to generate a set of synthetic data for the calibration of the model parameters. We compare the proposed RR curves with the ones available in the literature and discuss the advantages of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.20%
发文量
34
期刊介绍: Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities. Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信