{"title":"扰动拟线性椭圆型问题的多重解","authors":"R. Bartolo, A. M. Candela, A. Salvatore","doi":"10.12775/tmna.2022.069","DOIUrl":null,"url":null,"abstract":"We investigate the existence of multiple solutions\nfor the $(p,q)$-quasilinear elliptic problem\n\\[\n\\begin{cases}\n-\\Delta_p u -\\Delta_q u\\ =\\ g(x, u) + \\varepsilon\\ h(x,u)\n& \\mbox{in } \\Omega,\\\\\nu=0 & \\mbox{on } \\partial\\Omega,\\\\\n \\end{cases}\n\\]\nwhere $1< p< q< +\\infty$, $\\Omega$ is an open bounded domain of\n${\\mathbb R}^N$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$,\n$\\varepsilon\\in{\\mathbb R}$ and $h\\in C(\\overline\\Omega\\times{\\mathbb R},{\\mathbb R})$.\nIn spite of the possible lack of a variational structure of this problem,\nfrom suitable assumptions on $g(x,u)$ and\nappropriate procedures and estimates,\nthe existence of multiple solutions can be proved for small perturbations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for perturbed quasilinear elliptic problems\",\"authors\":\"R. Bartolo, A. M. Candela, A. Salvatore\",\"doi\":\"10.12775/tmna.2022.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the existence of multiple solutions\\nfor the $(p,q)$-quasilinear elliptic problem\\n\\\\[\\n\\\\begin{cases}\\n-\\\\Delta_p u -\\\\Delta_q u\\\\ =\\\\ g(x, u) + \\\\varepsilon\\\\ h(x,u)\\n& \\\\mbox{in } \\\\Omega,\\\\\\\\\\nu=0 & \\\\mbox{on } \\\\partial\\\\Omega,\\\\\\\\\\n \\\\end{cases}\\n\\\\]\\nwhere $1< p< q< +\\\\infty$, $\\\\Omega$ is an open bounded domain of\\n${\\\\mathbb R}^N$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$,\\n$\\\\varepsilon\\\\in{\\\\mathbb R}$ and $h\\\\in C(\\\\overline\\\\Omega\\\\times{\\\\mathbb R},{\\\\mathbb R})$.\\nIn spite of the possible lack of a variational structure of this problem,\\nfrom suitable assumptions on $g(x,u)$ and\\nappropriate procedures and estimates,\\nthe existence of multiple solutions can be proved for small perturbations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple solutions for perturbed quasilinear elliptic problems
We investigate the existence of multiple solutions
for the $(p,q)$-quasilinear elliptic problem
\[
\begin{cases}
-\Delta_p u -\Delta_q u\ =\ g(x, u) + \varepsilon\ h(x,u)
& \mbox{in } \Omega,\\
u=0 & \mbox{on } \partial\Omega,\\
\end{cases}
\]
where $1< p< q< +\infty$, $\Omega$ is an open bounded domain of
${\mathbb R}^N$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$,
$\varepsilon\in{\mathbb R}$ and $h\in C(\overline\Omega\times{\mathbb R},{\mathbb R})$.
In spite of the possible lack of a variational structure of this problem,
from suitable assumptions on $g(x,u)$ and
appropriate procedures and estimates,
the existence of multiple solutions can be proved for small perturbations.