Elizabeth Korevaar, S. Turner, Andrew B Forbes, A. Karahalios, M. Taljaard, Joanne E. McKenzie
{"title":"对中断时间序列研究中用于荟萃分析结果的统计方法的评价:模拟研究","authors":"Elizabeth Korevaar, S. Turner, Andrew B Forbes, A. Karahalios, M. Taljaard, Joanne E. McKenzie","doi":"10.1101/2022.10.17.22281160","DOIUrl":null,"url":null,"abstract":"Background Interrupted time series (ITS) are often meta-analysed to inform public health and policy decisions but examination of the statistical methods for ITS analysis and meta-analysis in this context is limited. Methods We simulated meta-analyses of ITS studies with continuous outcome data, analysed the studies using segmented linear regression with two estimation methods [ordinary least squares (OLS) and restricted maximum likelihood (REML)], and meta-analysed the immediate level- and slope-change effect estimates using fixed-effect and (multiple) random-effects meta-analysis methods. Simulation design parameters included varying series length; magnitude of lag-1 autocorrelation; magnitude of level- and slope-changes; number of included studies; and, effect size heterogeneity. Results All meta-analysis methods yielded unbiased estimates of the interruption effects. All random effects meta-analysis methods yielded coverage close to the nominal level, irrespective of the ITS analysis method used and other design parameters. However, heterogeneity was frequently overestimated in scenarios where the ITS study standard errors were underestimated, which occurred for short series or when the ITS analysis method did not appropriately account for autocorrelation. Conclusions The performance of meta-analysis methods depends on the design and analysis of the included ITS studies. Although all random effects methods performed well in terms of coverage, irrespective of the ITS analysis method, we recommend the use of effect estimates calculated from ITS methods that adjust for autocorrelation when possible. Doing so will likely to lead to more accurate estimates of the heterogeneity variance.","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of statistical methods used to meta-analyse results from interrupted time series studies: a simulation study\",\"authors\":\"Elizabeth Korevaar, S. Turner, Andrew B Forbes, A. Karahalios, M. Taljaard, Joanne E. McKenzie\",\"doi\":\"10.1101/2022.10.17.22281160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Interrupted time series (ITS) are often meta-analysed to inform public health and policy decisions but examination of the statistical methods for ITS analysis and meta-analysis in this context is limited. Methods We simulated meta-analyses of ITS studies with continuous outcome data, analysed the studies using segmented linear regression with two estimation methods [ordinary least squares (OLS) and restricted maximum likelihood (REML)], and meta-analysed the immediate level- and slope-change effect estimates using fixed-effect and (multiple) random-effects meta-analysis methods. Simulation design parameters included varying series length; magnitude of lag-1 autocorrelation; magnitude of level- and slope-changes; number of included studies; and, effect size heterogeneity. Results All meta-analysis methods yielded unbiased estimates of the interruption effects. All random effects meta-analysis methods yielded coverage close to the nominal level, irrespective of the ITS analysis method used and other design parameters. However, heterogeneity was frequently overestimated in scenarios where the ITS study standard errors were underestimated, which occurred for short series or when the ITS analysis method did not appropriately account for autocorrelation. Conclusions The performance of meta-analysis methods depends on the design and analysis of the included ITS studies. Although all random effects methods performed well in terms of coverage, irrespective of the ITS analysis method, we recommend the use of effect estimates calculated from ITS methods that adjust for autocorrelation when possible. Doing so will likely to lead to more accurate estimates of the heterogeneity variance.\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.10.17.22281160\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/2022.10.17.22281160","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Evaluation of statistical methods used to meta-analyse results from interrupted time series studies: a simulation study
Background Interrupted time series (ITS) are often meta-analysed to inform public health and policy decisions but examination of the statistical methods for ITS analysis and meta-analysis in this context is limited. Methods We simulated meta-analyses of ITS studies with continuous outcome data, analysed the studies using segmented linear regression with two estimation methods [ordinary least squares (OLS) and restricted maximum likelihood (REML)], and meta-analysed the immediate level- and slope-change effect estimates using fixed-effect and (multiple) random-effects meta-analysis methods. Simulation design parameters included varying series length; magnitude of lag-1 autocorrelation; magnitude of level- and slope-changes; number of included studies; and, effect size heterogeneity. Results All meta-analysis methods yielded unbiased estimates of the interruption effects. All random effects meta-analysis methods yielded coverage close to the nominal level, irrespective of the ITS analysis method used and other design parameters. However, heterogeneity was frequently overestimated in scenarios where the ITS study standard errors were underestimated, which occurred for short series or when the ITS analysis method did not appropriately account for autocorrelation. Conclusions The performance of meta-analysis methods depends on the design and analysis of the included ITS studies. Although all random effects methods performed well in terms of coverage, irrespective of the ITS analysis method, we recommend the use of effect estimates calculated from ITS methods that adjust for autocorrelation when possible. Doing so will likely to lead to more accurate estimates of the heterogeneity variance.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.