z型多跨弹性支承结构的自由与强制振动分析

IF 0.3 4区 工程技术 Q4 ACOUSTICS
Wei Liu, Kai Shi, Jieyu Li, Hai-Zhen Sun, Qianghfu Zhao
{"title":"z型多跨弹性支承结构的自由与强制振动分析","authors":"Wei Liu, Kai Shi, Jieyu Li, Hai-Zhen Sun, Qianghfu Zhao","doi":"10.3397/1/377037","DOIUrl":null,"url":null,"abstract":"In this paper, an in-plane Z-shaped structure with multi-span elastic supports is proposed to investigate the natural frequency and transmission response through employing in-plane governing equation and transfer matrix method. Based on the solutions of transverse vibration and torsional\n vibration, the total transfer matrix for the Z-shaped structure with multi-span elastic supports is derived. Furthermore, natural frequencies and mode shapes of the Z-shaped structure are calculated. Finite element simulation method (FEM) is conducted here to verify the theoretical results.\n In order to effectively evaluate the vibration reduction performance, transmission response of the Z-shaped structure under different boundary supports and multi-span elastic supports is analyzed. This work is significant for the vibration reduction of in-plane Z-shaped structure, especially\n the multi-span elastic support case in engineering applications.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free and forced vibration analysis of a Z-shaped structure with multi-span elastic supports\",\"authors\":\"Wei Liu, Kai Shi, Jieyu Li, Hai-Zhen Sun, Qianghfu Zhao\",\"doi\":\"10.3397/1/377037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an in-plane Z-shaped structure with multi-span elastic supports is proposed to investigate the natural frequency and transmission response through employing in-plane governing equation and transfer matrix method. Based on the solutions of transverse vibration and torsional\\n vibration, the total transfer matrix for the Z-shaped structure with multi-span elastic supports is derived. Furthermore, natural frequencies and mode shapes of the Z-shaped structure are calculated. Finite element simulation method (FEM) is conducted here to verify the theoretical results.\\n In order to effectively evaluate the vibration reduction performance, transmission response of the Z-shaped structure under different boundary supports and multi-span elastic supports is analyzed. This work is significant for the vibration reduction of in-plane Z-shaped structure, especially\\n the multi-span elastic support case in engineering applications.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/377037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/377037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种平面内z型多跨弹性支承结构,采用平面内控制方程和传递矩阵法研究其固有频率和传递响应。基于横向振动解和扭转振动解,导出了z型多跨弹性支承结构的总传递矩阵。进一步计算了z型结构的固有频率和振型。本文采用有限元模拟方法对理论结果进行了验证。为了有效评价z型结构的减振性能,分析了z型结构在不同边界支承和多跨弹性支承作用下的传递响应。该研究对平面内z型结构特别是多跨弹性支承的减振具有重要的工程应用意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free and forced vibration analysis of a Z-shaped structure with multi-span elastic supports
In this paper, an in-plane Z-shaped structure with multi-span elastic supports is proposed to investigate the natural frequency and transmission response through employing in-plane governing equation and transfer matrix method. Based on the solutions of transverse vibration and torsional vibration, the total transfer matrix for the Z-shaped structure with multi-span elastic supports is derived. Furthermore, natural frequencies and mode shapes of the Z-shaped structure are calculated. Finite element simulation method (FEM) is conducted here to verify the theoretical results. In order to effectively evaluate the vibration reduction performance, transmission response of the Z-shaped structure under different boundary supports and multi-span elastic supports is analyzed. This work is significant for the vibration reduction of in-plane Z-shaped structure, especially the multi-span elastic support case in engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Noise Control Engineering Journal
Noise Control Engineering Journal 工程技术-工程:综合
CiteScore
0.90
自引率
25.00%
发文量
37
审稿时长
3 months
期刊介绍: NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE). NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes. INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ: Provides the opportunity to reach a global audience of NCE professionals, academics, and students; Enhances the prestige of your work; Validates your work by formal peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信