高温对渣基碱活化混凝土和普通混凝土影响的试验研究

IF 0.8 Q4 ENGINEERING, CIVIL
S. Thakkar, U. Dave, Jay Patel
{"title":"高温对渣基碱活化混凝土和普通混凝土影响的试验研究","authors":"S. Thakkar, U. Dave, Jay Patel","doi":"10.56748/ejse.20242","DOIUrl":null,"url":null,"abstract":"Effect of elevated temperature on residual mechanical properties of slag based alkali activated concrete (SAC) was compared with Ordinary Portland cement concrete (OPC) when subjected to temperature up to 900 ° C. SAC was prepared using sodium hydroxide and sodium silicate activators. Residual compres-sive strength, tensile strength, flexural strength, modulus of elasticity and bond strength was studied at differ-ent temperature ranges to evaluate effect of high temperature on both concrete. It was observed that compres-sive strength for OPC decreased from 32 MPa to 19 MPa while in SAC variation was decrease was found to be from 32 MPa to 25 MPa. Similarly in SAC variation in residual split tensile, residual flexural strength, re-sidual Modulus of Elasticity and residual bond test was much less compared to OPC concrete. Physical changes were much noticeable in case of OPC at high temperature compared to SAC. This indicates that SAC performed better at high temperature as compared to that OPC.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of high temperature effect on Slag based alkali activated concrete and ordinary concrete\",\"authors\":\"S. Thakkar, U. Dave, Jay Patel\",\"doi\":\"10.56748/ejse.20242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of elevated temperature on residual mechanical properties of slag based alkali activated concrete (SAC) was compared with Ordinary Portland cement concrete (OPC) when subjected to temperature up to 900 ° C. SAC was prepared using sodium hydroxide and sodium silicate activators. Residual compres-sive strength, tensile strength, flexural strength, modulus of elasticity and bond strength was studied at differ-ent temperature ranges to evaluate effect of high temperature on both concrete. It was observed that compres-sive strength for OPC decreased from 32 MPa to 19 MPa while in SAC variation was decrease was found to be from 32 MPa to 25 MPa. Similarly in SAC variation in residual split tensile, residual flexural strength, re-sidual Modulus of Elasticity and residual bond test was much less compared to OPC concrete. Physical changes were much noticeable in case of OPC at high temperature compared to SAC. This indicates that SAC performed better at high temperature as compared to that OPC.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.20242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.20242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

研究了高温对渣基碱活化混凝土(SAC)和普通硅酸盐水泥混凝土(OPC)在900℃高温下残余力学性能的影响。采用氢氧化钠和硅酸钠作为活化剂制备了渣基碱活化混凝土(SAC)。研究了不同温度范围下的残余抗压强度、抗拉强度、抗折强度、弹性模量和粘结强度,评价了高温对两种混凝土的影响。结果表明,OPC的抗压强度从32 MPa下降到19 MPa, SAC的抗压强度从32 MPa下降到25 MPa。同样,残余劈裂拉伸、残余抗弯强度、残余弹性模量和残余粘结试验的SAC变化也比OPC混凝土小得多。与SAC相比,OPC在高温下的物理变化非常明显。这表明SAC在高温下的性能优于OPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation of high temperature effect on Slag based alkali activated concrete and ordinary concrete
Effect of elevated temperature on residual mechanical properties of slag based alkali activated concrete (SAC) was compared with Ordinary Portland cement concrete (OPC) when subjected to temperature up to 900 ° C. SAC was prepared using sodium hydroxide and sodium silicate activators. Residual compres-sive strength, tensile strength, flexural strength, modulus of elasticity and bond strength was studied at differ-ent temperature ranges to evaluate effect of high temperature on both concrete. It was observed that compres-sive strength for OPC decreased from 32 MPa to 19 MPa while in SAC variation was decrease was found to be from 32 MPa to 25 MPa. Similarly in SAC variation in residual split tensile, residual flexural strength, re-sidual Modulus of Elasticity and residual bond test was much less compared to OPC concrete. Physical changes were much noticeable in case of OPC at high temperature compared to SAC. This indicates that SAC performed better at high temperature as compared to that OPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信