65 ml/r燃油泵机械效率及活塞优化研究

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yang-Xi Ding, Chenchen Zhang, Chuan-De Ruan, Chengwei Tong, J. Ruan
{"title":"65 ml/r燃油泵机械效率及活塞优化研究","authors":"Yang-Xi Ding, Chenchen Zhang, Chuan-De Ruan, Chengwei Tong, J. Ruan","doi":"10.1177/16878132231189676","DOIUrl":null,"url":null,"abstract":"The 65 ml/r fuel pump proposed in this paper is a new type of large-displacement piston pump. The pump is of the roller plunger type construction. This structure enables the pump to have good performance even under high and variable speed conditions. Firstly, force analysis of this pump and establishment of mathematical model of pump mechanical efficiency. The influence of load pressure and speed on mechanical efficiency was obtained by numerical simulation through matlab. Then the prototype was designed and manufactured. The pump outlet pressure, outlet flow rate, and torque were measured on the test bench under various load pressure and speed, and mechanical efficiency of pump at various load pressure and speed was got. The experimental data and simulation are close. 65 ml/r fuel pump has a volumetric efficiency of 99% and a mechanical efficiency of 58.6% at a load pressure of 3 MPa and a speed of 1500 rpm. From experimental results, 65 ml/r fuel pump volumetric efficiency is high, but there is a problem of low mechanical efficiency. The piston of pump will be optimized for improved mechanical efficiency of pump. Then mechanical efficiency of the optimized pump is calculated and compared with mechanical efficiency before optimization. Results show that piston optimization will increase mechanical efficiency of pump.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on mechanical efficiency of 65 ml/r fuel pump and its piston optimization\",\"authors\":\"Yang-Xi Ding, Chenchen Zhang, Chuan-De Ruan, Chengwei Tong, J. Ruan\",\"doi\":\"10.1177/16878132231189676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 65 ml/r fuel pump proposed in this paper is a new type of large-displacement piston pump. The pump is of the roller plunger type construction. This structure enables the pump to have good performance even under high and variable speed conditions. Firstly, force analysis of this pump and establishment of mathematical model of pump mechanical efficiency. The influence of load pressure and speed on mechanical efficiency was obtained by numerical simulation through matlab. Then the prototype was designed and manufactured. The pump outlet pressure, outlet flow rate, and torque were measured on the test bench under various load pressure and speed, and mechanical efficiency of pump at various load pressure and speed was got. The experimental data and simulation are close. 65 ml/r fuel pump has a volumetric efficiency of 99% and a mechanical efficiency of 58.6% at a load pressure of 3 MPa and a speed of 1500 rpm. From experimental results, 65 ml/r fuel pump volumetric efficiency is high, but there is a problem of low mechanical efficiency. The piston of pump will be optimized for improved mechanical efficiency of pump. Then mechanical efficiency of the optimized pump is calculated and compared with mechanical efficiency before optimization. Results show that piston optimization will increase mechanical efficiency of pump.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231189676\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231189676","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出的65ml /r燃油泵是一种新型的大排量柱塞泵。该泵为滚柱塞式结构。这种结构使泵即使在高速和变速条件下也具有良好的性能。首先对该泵进行受力分析,建立泵机械效率的数学模型。通过matlab对载荷压力和转速对机械效率的影响进行了数值模拟。然后设计并制造了样机。在试验台上测量了不同负载压力和转速下泵的出口压力、出口流量和扭矩,得到了不同负载压力和转速下泵的机械效率。实验数据与仿真结果接近。65 ml/r燃油泵在负载压力为3 MPa,转速为1500 rpm时,容积效率为99%,机械效率为58.6%。从实验结果看,65 ml/r燃油泵容积效率高,但存在机械效率低的问题。对泵的活塞进行优化,提高泵的机械效率。然后计算优化后的泵的机械效率,并与优化前的机械效率进行比较。结果表明,活塞优化可以提高泵的机械效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on mechanical efficiency of 65 ml/r fuel pump and its piston optimization
The 65 ml/r fuel pump proposed in this paper is a new type of large-displacement piston pump. The pump is of the roller plunger type construction. This structure enables the pump to have good performance even under high and variable speed conditions. Firstly, force analysis of this pump and establishment of mathematical model of pump mechanical efficiency. The influence of load pressure and speed on mechanical efficiency was obtained by numerical simulation through matlab. Then the prototype was designed and manufactured. The pump outlet pressure, outlet flow rate, and torque were measured on the test bench under various load pressure and speed, and mechanical efficiency of pump at various load pressure and speed was got. The experimental data and simulation are close. 65 ml/r fuel pump has a volumetric efficiency of 99% and a mechanical efficiency of 58.6% at a load pressure of 3 MPa and a speed of 1500 rpm. From experimental results, 65 ml/r fuel pump volumetric efficiency is high, but there is a problem of low mechanical efficiency. The piston of pump will be optimized for improved mechanical efficiency of pump. Then mechanical efficiency of the optimized pump is calculated and compared with mechanical efficiency before optimization. Results show that piston optimization will increase mechanical efficiency of pump.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信