可压缩双流体Euler-Maxwell方程解的整体存在性和渐近性

IF 1.4 Q2 MATHEMATICS, APPLIED
Ismahan Binshati, H. Hattori
{"title":"可压缩双流体Euler-Maxwell方程解的整体存在性和渐近性","authors":"Ismahan Binshati, H. Hattori","doi":"10.1155/2020/4363296","DOIUrl":null,"url":null,"abstract":"We study the global existence and asymptotic behavior of the solutions for two-fluid compressible isentropic Euler–Maxwell equations by the Fourier transform and energy method. We discuss the case when the pressure for two fluids is not identical, and we also add friction between the two fluids. In addition, we discuss the rates of decay of norms for a linear system. Moreover, we use the result for estimates to prove the decay rates for the nonlinear systems.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2020 1","pages":"1-27"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/4363296","citationCount":"0","resultStr":"{\"title\":\"Global Existence and Asymptotic Behavior of Solutions for Compressible Two-Fluid Euler–Maxwell Equation\",\"authors\":\"Ismahan Binshati, H. Hattori\",\"doi\":\"10.1155/2020/4363296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the global existence and asymptotic behavior of the solutions for two-fluid compressible isentropic Euler–Maxwell equations by the Fourier transform and energy method. We discuss the case when the pressure for two fluids is not identical, and we also add friction between the two fluids. In addition, we discuss the rates of decay of norms for a linear system. Moreover, we use the result for estimates to prove the decay rates for the nonlinear systems.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\"2020 1\",\"pages\":\"1-27\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/4363296\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/4363296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/4363296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用傅立叶变换和能量方法研究了两流体可压缩等熵Euler–Maxwell方程解的全局存在性和渐近性。我们讨论了当两种流体的压力不相等时的情况,我们还增加了两种流体之间的摩擦力。此外,我们还讨论了线性系统范数的衰变率。此外,我们用这个结果来估计非线性系统的衰变率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence and Asymptotic Behavior of Solutions for Compressible Two-Fluid Euler–Maxwell Equation
We study the global existence and asymptotic behavior of the solutions for two-fluid compressible isentropic Euler–Maxwell equations by the Fourier transform and energy method. We discuss the case when the pressure for two fluids is not identical, and we also add friction between the two fluids. In addition, we discuss the rates of decay of norms for a linear system. Moreover, we use the result for estimates to prove the decay rates for the nonlinear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信