Anatolii Omelchenko, O. Vinnichenko, P. Neyezhmakov, Oleksii Fedorov, V. Bolyuh
{"title":"相关干涉作用下弹道激光重力仪数据的优化处理","authors":"Anatolii Omelchenko, O. Vinnichenko, P. Neyezhmakov, Oleksii Fedorov, V. Bolyuh","doi":"10.24027/2306-7039.3.2021.241522","DOIUrl":null,"url":null,"abstract":"Abstract \nIn order to develop optimal data processing algorithms in ballistic laser gravimeters under the effect of correlated interference, the method of generalized least squares is applied. In this case, to describe the interference, a mathematical model of the autoregression process is used, for which the inverse correlation matrix has a band type and is expressed through the values of the autoregression coefficients. To convert the “path-time” data from the output of the coincidence circuit of ballistic laser gravimeters to a process uniform in time, their local quadratic interpolation is used. \nAlgorithms for data processing in a ballistic gravimeter, developed on the basis of a method of weighted least squares using orthogonal Hahn polynomials, are considered. To implement a symmetric measurement method, the symmetric Hahn polynomials, characterized by one parameter, are used. \nThe method of mathematical modelling is used to study the gain in the accuracy of measuring the gravitational acceleration by the synthesized algorithms in comparison with the algorithm based on the method of least squares. It is shown that auto seismic interference in ballistic laser gravimeters with a symmetric measurement method can be significantly reduced by using a mathematical model of the second-order autoregressive process in the method of generalized least squares. A comparative analysis of the characteristics of the algorithms developed using the method of generalized least squares, the method of weighted least squares and the method of ordinary least squares is carried out.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal data processing in the ballistic laser gravimeter under the effect of correlated interference\",\"authors\":\"Anatolii Omelchenko, O. Vinnichenko, P. Neyezhmakov, Oleksii Fedorov, V. Bolyuh\",\"doi\":\"10.24027/2306-7039.3.2021.241522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract \\nIn order to develop optimal data processing algorithms in ballistic laser gravimeters under the effect of correlated interference, the method of generalized least squares is applied. In this case, to describe the interference, a mathematical model of the autoregression process is used, for which the inverse correlation matrix has a band type and is expressed through the values of the autoregression coefficients. To convert the “path-time” data from the output of the coincidence circuit of ballistic laser gravimeters to a process uniform in time, their local quadratic interpolation is used. \\nAlgorithms for data processing in a ballistic gravimeter, developed on the basis of a method of weighted least squares using orthogonal Hahn polynomials, are considered. To implement a symmetric measurement method, the symmetric Hahn polynomials, characterized by one parameter, are used. \\nThe method of mathematical modelling is used to study the gain in the accuracy of measuring the gravitational acceleration by the synthesized algorithms in comparison with the algorithm based on the method of least squares. It is shown that auto seismic interference in ballistic laser gravimeters with a symmetric measurement method can be significantly reduced by using a mathematical model of the second-order autoregressive process in the method of generalized least squares. A comparative analysis of the characteristics of the algorithms developed using the method of generalized least squares, the method of weighted least squares and the method of ordinary least squares is carried out.\",\"PeriodicalId\":40775,\"journal\":{\"name\":\"Ukrainian Metrological Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Metrological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24027/2306-7039.3.2021.241522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.3.2021.241522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Optimal data processing in the ballistic laser gravimeter under the effect of correlated interference
Abstract
In order to develop optimal data processing algorithms in ballistic laser gravimeters under the effect of correlated interference, the method of generalized least squares is applied. In this case, to describe the interference, a mathematical model of the autoregression process is used, for which the inverse correlation matrix has a band type and is expressed through the values of the autoregression coefficients. To convert the “path-time” data from the output of the coincidence circuit of ballistic laser gravimeters to a process uniform in time, their local quadratic interpolation is used.
Algorithms for data processing in a ballistic gravimeter, developed on the basis of a method of weighted least squares using orthogonal Hahn polynomials, are considered. To implement a symmetric measurement method, the symmetric Hahn polynomials, characterized by one parameter, are used.
The method of mathematical modelling is used to study the gain in the accuracy of measuring the gravitational acceleration by the synthesized algorithms in comparison with the algorithm based on the method of least squares. It is shown that auto seismic interference in ballistic laser gravimeters with a symmetric measurement method can be significantly reduced by using a mathematical model of the second-order autoregressive process in the method of generalized least squares. A comparative analysis of the characteristics of the algorithms developed using the method of generalized least squares, the method of weighted least squares and the method of ordinary least squares is carried out.