Hamed Mohammadbagherpoor, Alperen Acemoglu, L. Mattos, D. Caldwell, James J. Johnson, J. Muth, E. Grant
{"title":"用于组织消融的闭环磁驱动激光扫描系统的设计与测试","authors":"Hamed Mohammadbagherpoor, Alperen Acemoglu, L. Mattos, D. Caldwell, James J. Johnson, J. Muth, E. Grant","doi":"10.1115/1.4053073","DOIUrl":null,"url":null,"abstract":"\n Biomedical robotic systems continue to hold unlimited potential for surgical procedures. Robotized laser endoscopic tools provide surgeons with increased accuracy in the laser ablation of tissue and tumors. The research here catalogs the design and implementation of a new laser endoscopic tool for tissue ablation. A novel feature of this new device is the inclusion of a feedback loop that measures the position of the laser beam via a photo-detector sensor. The scale of this new device was governed by the dimensions of the photo-detector sensor. The tip of the laser's fiber optic cable is controlled by the torque interaction between permanent magnet rings surrounding the fiber optic and the custom designed solenoid coils. Prior to building the physical test-bed the system was modeled and simulated using COMSOL software. In pre-clinical trials, the physical experimental results showed that the designed prototype laser scanner system accurately track different ablation patterns and gives a consistent output position for the laser beam however, the heat diffusion into the tissue around the desired line of the geometric shape would give wider ablation margins than was desirable.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing and Testing a Closed-loop Magnetically Actuated Laser Scanning System for Tissue Ablation\",\"authors\":\"Hamed Mohammadbagherpoor, Alperen Acemoglu, L. Mattos, D. Caldwell, James J. Johnson, J. Muth, E. Grant\",\"doi\":\"10.1115/1.4053073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Biomedical robotic systems continue to hold unlimited potential for surgical procedures. Robotized laser endoscopic tools provide surgeons with increased accuracy in the laser ablation of tissue and tumors. The research here catalogs the design and implementation of a new laser endoscopic tool for tissue ablation. A novel feature of this new device is the inclusion of a feedback loop that measures the position of the laser beam via a photo-detector sensor. The scale of this new device was governed by the dimensions of the photo-detector sensor. The tip of the laser's fiber optic cable is controlled by the torque interaction between permanent magnet rings surrounding the fiber optic and the custom designed solenoid coils. Prior to building the physical test-bed the system was modeled and simulated using COMSOL software. In pre-clinical trials, the physical experimental results showed that the designed prototype laser scanner system accurately track different ablation patterns and gives a consistent output position for the laser beam however, the heat diffusion into the tissue around the desired line of the geometric shape would give wider ablation margins than was desirable.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053073\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Designing and Testing a Closed-loop Magnetically Actuated Laser Scanning System for Tissue Ablation
Biomedical robotic systems continue to hold unlimited potential for surgical procedures. Robotized laser endoscopic tools provide surgeons with increased accuracy in the laser ablation of tissue and tumors. The research here catalogs the design and implementation of a new laser endoscopic tool for tissue ablation. A novel feature of this new device is the inclusion of a feedback loop that measures the position of the laser beam via a photo-detector sensor. The scale of this new device was governed by the dimensions of the photo-detector sensor. The tip of the laser's fiber optic cable is controlled by the torque interaction between permanent magnet rings surrounding the fiber optic and the custom designed solenoid coils. Prior to building the physical test-bed the system was modeled and simulated using COMSOL software. In pre-clinical trials, the physical experimental results showed that the designed prototype laser scanner system accurately track different ablation patterns and gives a consistent output position for the laser beam however, the heat diffusion into the tissue around the desired line of the geometric shape would give wider ablation margins than was desirable.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.