配对-杰克猜想中无取向星座序列及边际和的生成

Q3 Mathematics
Houcine Ben Dali
{"title":"配对-杰克猜想中无取向星座序列及边际和的生成","authors":"Houcine Ben Dali","doi":"10.5802/alco.207","DOIUrl":null,"url":null,"abstract":"Using the description of hypermaps with matchings, Goulden and Jackson have given an expression of the generating series of rooted bipartite maps in terms of the zonal polynomials. We generalize this approach to the case of constellations on non-oriented surfaces that have recently been introduced by Chapuy and Do{\\l}\\k{e}ga. A key step in the proof is an encoding of constellations with tuples of matchings. We consider a one parameter deformation of the generating series of constellations using Jack polynomials and we introduce the coefficients $c^\\lambda_{\\mu^0,...,\\mu^k}(b)$ obtained by the expansion of these functions in the power-sum basis. These coefficients are indexed by $k+2$ integer partitions and the deformation parameter $b$, and can be considered as a generalization for $k\\geq1$ of the connection coefficients introduced by Goulden and Jackson. We prove that when we take some marginal sums, these coefficients enumerate $b$-weighted $k$-tuples of matchings. This can be seen as an\"unrooted\"version of a recent result of Chapuy and Do{\\l}\\k{e}ga for constellations. For $k=1$, this gives a partial answer to Goulden and Jackson Matching-Jack conjecture. Lassale has formulated a positivity conjecture for the coefficients $\\theta^{(\\alpha)}_\\mu(\\lambda)$, defined as the coefficient of the Jack polynomial $J_\\lambda^{(\\alpha)}$ in the power-sum basis. We use the second main result of this paper to give a proof of this conjecture in the case of partitions $\\lambda$ with rectangular shape.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generating series of non-oriented constellations and marginal sums in the Matching-Jack conjecture\",\"authors\":\"Houcine Ben Dali\",\"doi\":\"10.5802/alco.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the description of hypermaps with matchings, Goulden and Jackson have given an expression of the generating series of rooted bipartite maps in terms of the zonal polynomials. We generalize this approach to the case of constellations on non-oriented surfaces that have recently been introduced by Chapuy and Do{\\\\l}\\\\k{e}ga. A key step in the proof is an encoding of constellations with tuples of matchings. We consider a one parameter deformation of the generating series of constellations using Jack polynomials and we introduce the coefficients $c^\\\\lambda_{\\\\mu^0,...,\\\\mu^k}(b)$ obtained by the expansion of these functions in the power-sum basis. These coefficients are indexed by $k+2$ integer partitions and the deformation parameter $b$, and can be considered as a generalization for $k\\\\geq1$ of the connection coefficients introduced by Goulden and Jackson. We prove that when we take some marginal sums, these coefficients enumerate $b$-weighted $k$-tuples of matchings. This can be seen as an\\\"unrooted\\\"version of a recent result of Chapuy and Do{\\\\l}\\\\k{e}ga for constellations. For $k=1$, this gives a partial answer to Goulden and Jackson Matching-Jack conjecture. Lassale has formulated a positivity conjecture for the coefficients $\\\\theta^{(\\\\alpha)}_\\\\mu(\\\\lambda)$, defined as the coefficient of the Jack polynomial $J_\\\\lambda^{(\\\\alpha)}$ in the power-sum basis. We use the second main result of this paper to give a proof of this conjecture in the case of partitions $\\\\lambda$ with rectangular shape.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

Goulden和Jackson利用具有匹配的超映射的描述,用区域多项式给出了根二分映射的生成级数的表达式。我们将这种方法推广到Chapuy和Do最近引入的非定向表面上的星座的情况{e}ga.证明中的一个关键步骤是用匹配元组对星座进行编码。我们考虑了使用Jack多项式生成星座序列的一个单参数变形,并引入了通过在幂和基上展开这些函数获得的系数$c^\lambda_{\mu^0,…,\mu^k}(b)$。这些系数由$k+2$整数分区和变形参数$b$索引,并且可以被认为是Goulden和Jackson引入的连接系数$k\geq1$的推广。我们证明了当我们取一些边际和时,这些系数列举了匹配的$b$加权$k$元组。这可以被视为Chapuy和Do{\l \sk最近结果的“未展开”版本{e}ga用于星座。对于$k=1$,这给出了Goulden和Jackson Matching Jack猜想的部分答案。Lassale对系数$\theta^{(\alpha)}_\mu(\lambda)$提出了一个正性猜想,定义为幂和基上Jack多项式$J_\lambda^{)}$的系数。我们用本文的第二个主要结果在矩形分区$\lambda$的情况下给出了这个猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating series of non-oriented constellations and marginal sums in the Matching-Jack conjecture
Using the description of hypermaps with matchings, Goulden and Jackson have given an expression of the generating series of rooted bipartite maps in terms of the zonal polynomials. We generalize this approach to the case of constellations on non-oriented surfaces that have recently been introduced by Chapuy and Do{\l}\k{e}ga. A key step in the proof is an encoding of constellations with tuples of matchings. We consider a one parameter deformation of the generating series of constellations using Jack polynomials and we introduce the coefficients $c^\lambda_{\mu^0,...,\mu^k}(b)$ obtained by the expansion of these functions in the power-sum basis. These coefficients are indexed by $k+2$ integer partitions and the deformation parameter $b$, and can be considered as a generalization for $k\geq1$ of the connection coefficients introduced by Goulden and Jackson. We prove that when we take some marginal sums, these coefficients enumerate $b$-weighted $k$-tuples of matchings. This can be seen as an"unrooted"version of a recent result of Chapuy and Do{\l}\k{e}ga for constellations. For $k=1$, this gives a partial answer to Goulden and Jackson Matching-Jack conjecture. Lassale has formulated a positivity conjecture for the coefficients $\theta^{(\alpha)}_\mu(\lambda)$, defined as the coefficient of the Jack polynomial $J_\lambda^{(\alpha)}$ in the power-sum basis. We use the second main result of this paper to give a proof of this conjecture in the case of partitions $\lambda$ with rectangular shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信