S. Ikeda, Tomohiro Kobayashi, Y. Otake, Ryuji Matsui, M. Okamura, N. Hayashizaki
{"title":"可移动中子源ransi - iii 500 MHz-RFQ直线加速器的研制与射频测试","authors":"S. Ikeda, Tomohiro Kobayashi, Y. Otake, Ryuji Matsui, M. Okamura, N. Hayashizaki","doi":"10.3233/jnr-220021","DOIUrl":null,"url":null,"abstract":"At RIKEN, a transportable accelerator-driven compact neutron source (RANS-III) is under development for an on-site nondestructive inspection of the degradation of old concrete and reinforcing steel. RANS-III consists of an ion source, a low-energy beam transport, a radio frequency quadrupole linear accelerator (RFQ linac), a radio frequency (RF) system, a high-energy beam transport, a target station and a neutron measurement system. Because the inner diameter of the RFQ linac is inversely proportional to the resonance frequency, the resonance frequency of the RANS-III RFQ linac in this study was chosen to be 500 MHz, which is 2.5 times that of the RANS-II RFQ linac. Therefore, the inner diameter and weight of the RANS-III RFQ linac were reduced to approximately half and one third, respectively, of those of the RANS-II RFQ linac. The RANS-III RFQ linac was designed to accelerate a proton beam with a 10 mA peak current and 100 μA average beam current from 30 keV to 2.49 MeV (Journal of Disaster Research 12(3) (2017) 585–592). Based on the evaluations, an RFQ linac for RANS-III was fabricated, and the RF characteristics of the cavity, such as the resonant frequency and electric-field distribution, were measured using a low-power test and tuned using fixed tuners. In addition, RF couplers and RF systems were constructed to inject RF power into the RANS-III RFQ linac, and RF input tests were performed.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and RF test of the 500 MHz-RFQ linear accelerator for a transportable neutron source RANS-III\",\"authors\":\"S. Ikeda, Tomohiro Kobayashi, Y. Otake, Ryuji Matsui, M. Okamura, N. Hayashizaki\",\"doi\":\"10.3233/jnr-220021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At RIKEN, a transportable accelerator-driven compact neutron source (RANS-III) is under development for an on-site nondestructive inspection of the degradation of old concrete and reinforcing steel. RANS-III consists of an ion source, a low-energy beam transport, a radio frequency quadrupole linear accelerator (RFQ linac), a radio frequency (RF) system, a high-energy beam transport, a target station and a neutron measurement system. Because the inner diameter of the RFQ linac is inversely proportional to the resonance frequency, the resonance frequency of the RANS-III RFQ linac in this study was chosen to be 500 MHz, which is 2.5 times that of the RANS-II RFQ linac. Therefore, the inner diameter and weight of the RANS-III RFQ linac were reduced to approximately half and one third, respectively, of those of the RANS-II RFQ linac. The RANS-III RFQ linac was designed to accelerate a proton beam with a 10 mA peak current and 100 μA average beam current from 30 keV to 2.49 MeV (Journal of Disaster Research 12(3) (2017) 585–592). Based on the evaluations, an RFQ linac for RANS-III was fabricated, and the RF characteristics of the cavity, such as the resonant frequency and electric-field distribution, were measured using a low-power test and tuned using fixed tuners. In addition, RF couplers and RF systems were constructed to inject RF power into the RANS-III RFQ linac, and RF input tests were performed.\",\"PeriodicalId\":44708,\"journal\":{\"name\":\"Journal of Neutron Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neutron Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jnr-220021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Fabrication and RF test of the 500 MHz-RFQ linear accelerator for a transportable neutron source RANS-III
At RIKEN, a transportable accelerator-driven compact neutron source (RANS-III) is under development for an on-site nondestructive inspection of the degradation of old concrete and reinforcing steel. RANS-III consists of an ion source, a low-energy beam transport, a radio frequency quadrupole linear accelerator (RFQ linac), a radio frequency (RF) system, a high-energy beam transport, a target station and a neutron measurement system. Because the inner diameter of the RFQ linac is inversely proportional to the resonance frequency, the resonance frequency of the RANS-III RFQ linac in this study was chosen to be 500 MHz, which is 2.5 times that of the RANS-II RFQ linac. Therefore, the inner diameter and weight of the RANS-III RFQ linac were reduced to approximately half and one third, respectively, of those of the RANS-II RFQ linac. The RANS-III RFQ linac was designed to accelerate a proton beam with a 10 mA peak current and 100 μA average beam current from 30 keV to 2.49 MeV (Journal of Disaster Research 12(3) (2017) 585–592). Based on the evaluations, an RFQ linac for RANS-III was fabricated, and the RF characteristics of the cavity, such as the resonant frequency and electric-field distribution, were measured using a low-power test and tuned using fixed tuners. In addition, RF couplers and RF systems were constructed to inject RF power into the RANS-III RFQ linac, and RF input tests were performed.