求解线性方程组的一种改进经典迭代算法

Q4 Physics and Astronomy
Muhammad Shakeel Rind Baloch, Z. Kalhoro, M. Khalil, Prof. Abdul Wasim Shaikh
{"title":"求解线性方程组的一种改进经典迭代算法","authors":"Muhammad Shakeel Rind Baloch, Z. Kalhoro, M. Khalil, Prof. Abdul Wasim Shaikh","doi":"10.53560/ppasa(58-4)638","DOIUrl":null,"url":null,"abstract":"The fundamental problem of linear algebra is to solve the system of linear equations (SOLE’s). To solve SOLE’s, is one of the most crucial topics in iterative methods. The SOLE’s occurs throughout the natural sciences, social sciences, engineering, medicine and business. For the most part, iterative methods are used for solving sparse SOLE’s. In this research, an improved iterative scheme namely, ‘’a new improved classical iterative algorithm (NICA)’’ has been developed. The proposed iterative method is valid when the co-efficient matrix of SOLE’s is strictly diagonally dominant (SDD), irreducibly diagonally dominant (IDD), M-matrix, Symmetric positive definite with some conditions and H-matrix. Such types of SOLE’s does arise usually from ordinary differential equations (ODE’s) and partial differential equations (PDE’s). The proposed method reduces the number of iterations, decreases spectral radius and increases the rate of convergence. Some numerical examples are utilized to demonstrate the effectiveness of NICA over Jacobi (J), Gauss Siedel (GS), Successive Over Relaxation (SOR), Refinement of Jacobi (RJ), Second Refinement of Jacobi (SRJ), Generalized Jacobi (GJ) and Refinement of Generalized Jacobi (RGJ) methods. ","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Improved Classical Iterative Algorithm for Solving System of Linear Equations\",\"authors\":\"Muhammad Shakeel Rind Baloch, Z. Kalhoro, M. Khalil, Prof. Abdul Wasim Shaikh\",\"doi\":\"10.53560/ppasa(58-4)638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental problem of linear algebra is to solve the system of linear equations (SOLE’s). To solve SOLE’s, is one of the most crucial topics in iterative methods. The SOLE’s occurs throughout the natural sciences, social sciences, engineering, medicine and business. For the most part, iterative methods are used for solving sparse SOLE’s. In this research, an improved iterative scheme namely, ‘’a new improved classical iterative algorithm (NICA)’’ has been developed. The proposed iterative method is valid when the co-efficient matrix of SOLE’s is strictly diagonally dominant (SDD), irreducibly diagonally dominant (IDD), M-matrix, Symmetric positive definite with some conditions and H-matrix. Such types of SOLE’s does arise usually from ordinary differential equations (ODE’s) and partial differential equations (PDE’s). The proposed method reduces the number of iterations, decreases spectral radius and increases the rate of convergence. Some numerical examples are utilized to demonstrate the effectiveness of NICA over Jacobi (J), Gauss Siedel (GS), Successive Over Relaxation (SOR), Refinement of Jacobi (RJ), Second Refinement of Jacobi (SRJ), Generalized Jacobi (GJ) and Refinement of Generalized Jacobi (RGJ) methods. \",\"PeriodicalId\":36961,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(58-4)638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(58-4)638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

摘要

线性代数的基本问题是求解线性方程组。求解SOLE问题是迭代方法中最关键的问题之一。SOLE发生在自然科学、社会科学、工程、医学和商业领域。在大多数情况下,迭代方法用于求解稀疏SOLE。在本研究中,提出了一种改进的迭代方案,即“新的改进经典迭代算法(NICA)”。当SOLE的共有效矩阵是严格对角占优(SDD)、不可约对角占优(IDD)、M-矩阵、带某些条件的对称正定和H-矩阵时,所提出的迭代方法是有效的。这种类型的SOLE通常来自常微分方程(ODE)和偏微分方程(PDE)。该方法减少了迭代次数,减小了谱半径,提高了收敛速度。通过一些数值例子证明了NICA在Jacobi(J)、Gauss-Siedel(GS)、逐次过松弛(SOR)、Jacobi的精化(RJ)、雅可比的二次精化(SRJ)、广义雅可比(GJ)和广义雅可比的精化(RGJ)方法上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Improved Classical Iterative Algorithm for Solving System of Linear Equations
The fundamental problem of linear algebra is to solve the system of linear equations (SOLE’s). To solve SOLE’s, is one of the most crucial topics in iterative methods. The SOLE’s occurs throughout the natural sciences, social sciences, engineering, medicine and business. For the most part, iterative methods are used for solving sparse SOLE’s. In this research, an improved iterative scheme namely, ‘’a new improved classical iterative algorithm (NICA)’’ has been developed. The proposed iterative method is valid when the co-efficient matrix of SOLE’s is strictly diagonally dominant (SDD), irreducibly diagonally dominant (IDD), M-matrix, Symmetric positive definite with some conditions and H-matrix. Such types of SOLE’s does arise usually from ordinary differential equations (ODE’s) and partial differential equations (PDE’s). The proposed method reduces the number of iterations, decreases spectral radius and increases the rate of convergence. Some numerical examples are utilized to demonstrate the effectiveness of NICA over Jacobi (J), Gauss Siedel (GS), Successive Over Relaxation (SOR), Refinement of Jacobi (RJ), Second Refinement of Jacobi (SRJ), Generalized Jacobi (GJ) and Refinement of Generalized Jacobi (RGJ) methods. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信