T. Samsonov, O. Yakimova, D. A. Potemkin, O. A. Guseva
{"title":"多尺度地形数据特征密度的空间变化","authors":"T. Samsonov, O. Yakimova, D. A. Potemkin, O. A. Guseva","doi":"10.24057/2071-9388-2022-127","DOIUrl":null,"url":null,"abstract":"Digital topographic maps are created in a series of scales from large to small, and the underlying spatial data is commonly organized as a multiscale database consisting of several levels of detail (LoDs). Spatial density of features (or spatial objects) in such database varies both between LoDs (coarser levels are less densely populated with features) and within each LoD (feature density changes over the area). While the former type of density variation is caused by generalization, the latter one is mainly conditioned by geographic location and its properties, such as landscape complexity or fraction of urban areas. Since topographic database LoDs are derived using different data sources and generalization techniques, there is a need for a method that can help with automated evaluation of resulting feature density in terms of its appropriateness for the specified location and level of detail. This paper provides such method by uncovering dependencies between the location properties and the density of spatial data in multiscale topographic database. Changes in feature density are modeled as a function of spatial (landscape complexity and terrain ruggedness) and non-spatial (land cover types ratio) measures estimated via independent data sources. Resulting model predicts how much higher or lower is the expected spatial density of features over the area in comparison to the average density for the LoD. This information can be used further to assess the fitness of the data to the desired level of detail of the topographic map.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial variation of feature density in multiscale topographic data\",\"authors\":\"T. Samsonov, O. Yakimova, D. A. Potemkin, O. A. Guseva\",\"doi\":\"10.24057/2071-9388-2022-127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital topographic maps are created in a series of scales from large to small, and the underlying spatial data is commonly organized as a multiscale database consisting of several levels of detail (LoDs). Spatial density of features (or spatial objects) in such database varies both between LoDs (coarser levels are less densely populated with features) and within each LoD (feature density changes over the area). While the former type of density variation is caused by generalization, the latter one is mainly conditioned by geographic location and its properties, such as landscape complexity or fraction of urban areas. Since topographic database LoDs are derived using different data sources and generalization techniques, there is a need for a method that can help with automated evaluation of resulting feature density in terms of its appropriateness for the specified location and level of detail. This paper provides such method by uncovering dependencies between the location properties and the density of spatial data in multiscale topographic database. Changes in feature density are modeled as a function of spatial (landscape complexity and terrain ruggedness) and non-spatial (land cover types ratio) measures estimated via independent data sources. Resulting model predicts how much higher or lower is the expected spatial density of features over the area in comparison to the average density for the LoD. This information can be used further to assess the fitness of the data to the desired level of detail of the topographic map.\",\"PeriodicalId\":37517,\"journal\":{\"name\":\"Geography, Environment, Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography, Environment, Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24057/2071-9388-2022-127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2022-127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Spatial variation of feature density in multiscale topographic data
Digital topographic maps are created in a series of scales from large to small, and the underlying spatial data is commonly organized as a multiscale database consisting of several levels of detail (LoDs). Spatial density of features (or spatial objects) in such database varies both between LoDs (coarser levels are less densely populated with features) and within each LoD (feature density changes over the area). While the former type of density variation is caused by generalization, the latter one is mainly conditioned by geographic location and its properties, such as landscape complexity or fraction of urban areas. Since topographic database LoDs are derived using different data sources and generalization techniques, there is a need for a method that can help with automated evaluation of resulting feature density in terms of its appropriateness for the specified location and level of detail. This paper provides such method by uncovering dependencies between the location properties and the density of spatial data in multiscale topographic database. Changes in feature density are modeled as a function of spatial (landscape complexity and terrain ruggedness) and non-spatial (land cover types ratio) measures estimated via independent data sources. Resulting model predicts how much higher or lower is the expected spatial density of features over the area in comparison to the average density for the LoD. This information can be used further to assess the fitness of the data to the desired level of detail of the topographic map.
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.