{"title":"双氢青蒿素通过tlr4依赖性NF-κB信号的失活,改善猪链球菌源性muramidase释放蛋白诱导的先天炎症反应","authors":"Yun Ji , Kaiji Sun , Ying Yang , Zhenlong Wu","doi":"10.1016/j.jpha.2023.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>Muramidase-released protein (MRP) is now being recognized as a critical indicator of the virulence and pathogenicity of <em>Streptococcus suis</em> (<em>S. suis</em>). However, the identification of viable therapeutics for <em>S. suis</em> infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation. Dihydroartemisinin (DhA) is an artemisinin derivative with potential anti-inflammatory activity. The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure. This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages. With the candidate mechanism in mind, we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP. The innate immune response in mice was drastically triggered by MRP, manifesting as splenic and systemic inflammation with splenomegaly, immune cell infiltration, and an elevation in pro-inflammatory cytokines. A crucial role for Toll-like receptor 4 (TLR4) in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B (NF-κB) activation was revealed by TLR4 blockade. In addition, NF-κB-dependent transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs) activation was required for the inflammatory signal transduction engendered by MRP. Intriguingly, we observed an alleviation effect of DhA on the MRP-induced immune response, which referred to the suppression of TLR4-mediated actuation of NF-κB-STAT3/MAPK cascades. The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-κB activation, followed by an increase in the activity of STAT3 or MAPKs. DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade, highlighting the therapeutic potential of DhA in targeting <em>S. suis</em> infection diseases.</p></div>","PeriodicalId":16737,"journal":{"name":"Journal of Pharmaceutical Analysis","volume":"13 10","pages":"Pages 1183-1194"},"PeriodicalIF":6.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydroartemisinin ameliorates innate inflammatory response induced by Streptococcus suis-derived muramidase-released protein via inactivation of TLR4-dependent NF-κB signaling\",\"authors\":\"Yun Ji , Kaiji Sun , Ying Yang , Zhenlong Wu\",\"doi\":\"10.1016/j.jpha.2023.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Muramidase-released protein (MRP) is now being recognized as a critical indicator of the virulence and pathogenicity of <em>Streptococcus suis</em> (<em>S. suis</em>). However, the identification of viable therapeutics for <em>S. suis</em> infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation. Dihydroartemisinin (DhA) is an artemisinin derivative with potential anti-inflammatory activity. The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure. This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages. With the candidate mechanism in mind, we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP. The innate immune response in mice was drastically triggered by MRP, manifesting as splenic and systemic inflammation with splenomegaly, immune cell infiltration, and an elevation in pro-inflammatory cytokines. A crucial role for Toll-like receptor 4 (TLR4) in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B (NF-κB) activation was revealed by TLR4 blockade. In addition, NF-κB-dependent transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs) activation was required for the inflammatory signal transduction engendered by MRP. Intriguingly, we observed an alleviation effect of DhA on the MRP-induced immune response, which referred to the suppression of TLR4-mediated actuation of NF-κB-STAT3/MAPK cascades. The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-κB activation, followed by an increase in the activity of STAT3 or MAPKs. DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade, highlighting the therapeutic potential of DhA in targeting <em>S. suis</em> infection diseases.</p></div>\",\"PeriodicalId\":16737,\"journal\":{\"name\":\"Journal of Pharmaceutical Analysis\",\"volume\":\"13 10\",\"pages\":\"Pages 1183-1194\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095177923001016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095177923001016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dihydroartemisinin ameliorates innate inflammatory response induced by Streptococcus suis-derived muramidase-released protein via inactivation of TLR4-dependent NF-κB signaling
Muramidase-released protein (MRP) is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis (S. suis). However, the identification of viable therapeutics for S. suis infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation. Dihydroartemisinin (DhA) is an artemisinin derivative with potential anti-inflammatory activity. The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure. This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages. With the candidate mechanism in mind, we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP. The innate immune response in mice was drastically triggered by MRP, manifesting as splenic and systemic inflammation with splenomegaly, immune cell infiltration, and an elevation in pro-inflammatory cytokines. A crucial role for Toll-like receptor 4 (TLR4) in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B (NF-κB) activation was revealed by TLR4 blockade. In addition, NF-κB-dependent transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs) activation was required for the inflammatory signal transduction engendered by MRP. Intriguingly, we observed an alleviation effect of DhA on the MRP-induced immune response, which referred to the suppression of TLR4-mediated actuation of NF-κB-STAT3/MAPK cascades. The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-κB activation, followed by an increase in the activity of STAT3 or MAPKs. DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade, highlighting the therapeutic potential of DhA in targeting S. suis infection diseases.
期刊介绍:
The Journal of Pharmaceutical Analysis (JPA), established in 2011, serves as the official publication of Xi'an Jiaotong University.
JPA is a monthly, peer-reviewed, open-access journal dedicated to disseminating noteworthy original research articles, review papers, short communications, news, research highlights, and editorials in the realm of Pharmacy Analysis. Encompassing a wide spectrum of topics, including Pharmaceutical Analysis, Analytical Techniques and Methods, Pharmacology, Metabolism, Drug Delivery, Cellular Imaging & Analysis, Natural Products, and Biosensing, JPA provides a comprehensive platform for scholarly discourse and innovation in the field.