J. Kaduk, A. Gindhart, S. Gates-Rector, T. Blanton
{"title":"氨基戊酰胺硫酸氢盐(C19H25N2O)(HSO4)的晶体结构","authors":"J. Kaduk, A. Gindhart, S. Gates-Rector, T. Blanton","doi":"10.1017/S0885715622000343","DOIUrl":null,"url":null,"abstract":"The crystal structure of aminopentamide hydrogen sulfate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Aminopentamide hydrogen sulfate crystallizes in space group P21/c (#14) with a = 17.62255(14), b = 6.35534(4), c = 17.82499(10) Å, β = 96.4005(6)°, V = 1983.906(14) Å3, and Z = 4. The structure consists of layers parallel to the bc-plane with hydrogen sulfate anions at the core and aminopentamide cations on the outside. There is a strong charge-assisted O49–H53⋯O52 hydrogen bond between the hydrogen sulfate anions. This hydrogen bond links the anions in a chain parallel to the b-axis. The cation forms a discrete N–H⋯O hydrogen bond to the anion. The amide group also forms two weaker discrete hydrogen bonds to the anion. The three N–H⋯O hydrogen bonds link the cations and anions into columns parallel to the b-axis. This commercial material from USP contained an unidentified impurity, the powder pattern of which could be indexed on a monoclinic unit cell. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"37 1","pages":"200 - 205"},"PeriodicalIF":0.3000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure of aminopentamide hydrogen sulfate, (C19H25N2O)(HSO4)\",\"authors\":\"J. Kaduk, A. Gindhart, S. Gates-Rector, T. Blanton\",\"doi\":\"10.1017/S0885715622000343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structure of aminopentamide hydrogen sulfate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Aminopentamide hydrogen sulfate crystallizes in space group P21/c (#14) with a = 17.62255(14), b = 6.35534(4), c = 17.82499(10) Å, β = 96.4005(6)°, V = 1983.906(14) Å3, and Z = 4. The structure consists of layers parallel to the bc-plane with hydrogen sulfate anions at the core and aminopentamide cations on the outside. There is a strong charge-assisted O49–H53⋯O52 hydrogen bond between the hydrogen sulfate anions. This hydrogen bond links the anions in a chain parallel to the b-axis. The cation forms a discrete N–H⋯O hydrogen bond to the anion. The amide group also forms two weaker discrete hydrogen bonds to the anion. The three N–H⋯O hydrogen bonds link the cations and anions into columns parallel to the b-axis. This commercial material from USP contained an unidentified impurity, the powder pattern of which could be indexed on a monoclinic unit cell. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).\",\"PeriodicalId\":20333,\"journal\":{\"name\":\"Powder Diffraction\",\"volume\":\"37 1\",\"pages\":\"200 - 205\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Diffraction\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1017/S0885715622000343\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/S0885715622000343","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Crystal structure of aminopentamide hydrogen sulfate, (C19H25N2O)(HSO4)
The crystal structure of aminopentamide hydrogen sulfate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Aminopentamide hydrogen sulfate crystallizes in space group P21/c (#14) with a = 17.62255(14), b = 6.35534(4), c = 17.82499(10) Å, β = 96.4005(6)°, V = 1983.906(14) Å3, and Z = 4. The structure consists of layers parallel to the bc-plane with hydrogen sulfate anions at the core and aminopentamide cations on the outside. There is a strong charge-assisted O49–H53⋯O52 hydrogen bond between the hydrogen sulfate anions. This hydrogen bond links the anions in a chain parallel to the b-axis. The cation forms a discrete N–H⋯O hydrogen bond to the anion. The amide group also forms two weaker discrete hydrogen bonds to the anion. The three N–H⋯O hydrogen bonds link the cations and anions into columns parallel to the b-axis. This commercial material from USP contained an unidentified impurity, the powder pattern of which could be indexed on a monoclinic unit cell. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).