一类随机非线性分数阶微分方程的边值问题

M. Omaba, L. Omenyi
{"title":"一类随机非线性分数阶微分方程的边值问题","authors":"M. Omaba, L. Omenyi","doi":"10.30538/PSRP-OMA2020.0074","DOIUrl":null,"url":null,"abstract":"Consider a class of two-point Boundary Value Problems (BVP) for a stochastic nonlinear fractional order differential equation \\(D^\\alpha u(t)=\\lambda\\sqrt{I^\\beta[\\sigma^2(t,u(t))]}\\dot{w}(t)\\  ,0< t< 1\\) with boundary conditions \\(u(0)=0,\\,\\,u'(0)=u'(1)=0,\\) where \\(\\lambda>0\\) is a level of the noise term, \\(\\sigma:[0,1]\\times\\mathbb{R}\\rightarrow\\mathbb{R}\\) is continuous, \\(\\dot{w}(t)\\) is a generalized derivative of Wiener process (Gaussian white noise), \\(D^\\alpha\\) is the Riemann-Liouville fractional differential operator of order \\(\\alpha\\in (3,4)\\) and \\(I^\\beta,\\,\\,\\beta>0\\) is a fractional integral operator. We formulate the solution of the equation via a stochastic Volterra-type equation and investigate its existence and uniqueness under some precise linearity conditions using contraction fixed point theorem. A case of the above BVP for a stochastic nonlinear second order differential equation for \\(\\alpha=2\\) and \\(\\beta=0\\) with \\(u(0)=u(1)=0\\) is also studied.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems for a class of stochastic nonlinear fractional order differential equations\",\"authors\":\"M. Omaba, L. Omenyi\",\"doi\":\"10.30538/PSRP-OMA2020.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a class of two-point Boundary Value Problems (BVP) for a stochastic nonlinear fractional order differential equation \\\\(D^\\\\alpha u(t)=\\\\lambda\\\\sqrt{I^\\\\beta[\\\\sigma^2(t,u(t))]}\\\\dot{w}(t)\\\\  ,0< t< 1\\\\) with boundary conditions \\\\(u(0)=0,\\\\,\\\\,u'(0)=u'(1)=0,\\\\) where \\\\(\\\\lambda>0\\\\) is a level of the noise term, \\\\(\\\\sigma:[0,1]\\\\times\\\\mathbb{R}\\\\rightarrow\\\\mathbb{R}\\\\) is continuous, \\\\(\\\\dot{w}(t)\\\\) is a generalized derivative of Wiener process (Gaussian white noise), \\\\(D^\\\\alpha\\\\) is the Riemann-Liouville fractional differential operator of order \\\\(\\\\alpha\\\\in (3,4)\\\\) and \\\\(I^\\\\beta,\\\\,\\\\,\\\\beta>0\\\\) is a fractional integral operator. We formulate the solution of the equation via a stochastic Volterra-type equation and investigate its existence and uniqueness under some precise linearity conditions using contraction fixed point theorem. A case of the above BVP for a stochastic nonlinear second order differential equation for \\\\(\\\\alpha=2\\\\) and \\\\(\\\\beta=0\\\\) with \\\\(u(0)=u(1)=0\\\\) is also studied.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-OMA2020.0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2020.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类随机非线性分数阶微分方程的两点边值问题 \(D^\alpha u(t)=\lambda\sqrt{I^\beta[\sigma^2(t,u(t))]}\dot{w}(t)\  ,0< t< 1\) 有边界条件 \(u(0)=0,\,\,u'(0)=u'(1)=0,\) 在哪里 \(\lambda>0\) 是噪声项的一个级别, \(\sigma:[0,1]\times\mathbb{R}\rightarrow\mathbb{R}\) 是连续的, \(\dot{w}(t)\) 是Wiener过程(高斯白噪声)的广义导数, \(D^\alpha\) 黎曼-刘维尔分数阶微分算子是有序的吗 \(\alpha\in (3,4)\) 和 \(I^\beta,\,\,\beta>0\) 是一个分数积分算子。我们利用随机volterra型方程给出了方程的解,并利用收缩不动点定理研究了该方程在一些精确线性条件下的存在唯一性。的随机非线性二阶微分方程的上述BVP的一个例子 \(\alpha=2\) 和 \(\beta=0\) 有 \(u(0)=u(1)=0\) 也被研究过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary value problems for a class of stochastic nonlinear fractional order differential equations
Consider a class of two-point Boundary Value Problems (BVP) for a stochastic nonlinear fractional order differential equation \(D^\alpha u(t)=\lambda\sqrt{I^\beta[\sigma^2(t,u(t))]}\dot{w}(t)\  ,0< t< 1\) with boundary conditions \(u(0)=0,\,\,u'(0)=u'(1)=0,\) where \(\lambda>0\) is a level of the noise term, \(\sigma:[0,1]\times\mathbb{R}\rightarrow\mathbb{R}\) is continuous, \(\dot{w}(t)\) is a generalized derivative of Wiener process (Gaussian white noise), \(D^\alpha\) is the Riemann-Liouville fractional differential operator of order \(\alpha\in (3,4)\) and \(I^\beta,\,\,\beta>0\) is a fractional integral operator. We formulate the solution of the equation via a stochastic Volterra-type equation and investigate its existence and uniqueness under some precise linearity conditions using contraction fixed point theorem. A case of the above BVP for a stochastic nonlinear second order differential equation for \(\alpha=2\) and \(\beta=0\) with \(u(0)=u(1)=0\) is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信