非线性电磁场耦合Schrödinger方程的纤维化方法

Pub Date : 2018-06-13 DOI:10.5565/publmat6422001
G. Siciliano, K. Silva
{"title":"非线性电磁场耦合Schrödinger方程的纤维化方法","authors":"G. Siciliano, K. Silva","doi":"10.5565/publmat6422001","DOIUrl":null,"url":null,"abstract":"We study, with respect to the parameter $q\\neq0$, the following Schrodinger-Bopp-Podolsky system in $\\mathbb R^{3}$ \\begin{equation*} \\left\\{ \\begin{aligned} -&\\Delta u+\\omega u+q^2\\phi u=|u|^{p-2}u, \\\\ &-\\Delta \\phi+a^2\\Delta^2 \\phi = 4\\pi u^2, \\end{aligned} \\right. \n\\end{equation*} where $p\\in(2,3], \\omega>0, a\\geq0$ are fixed. We prove, by means of the fibering approach, that the system has no solutions at all for large values of $q's$, and has two radial solutions for small $q's$. We give also qualitative properties about the energy level of the solutions and a variational characterization of these extremals values of $q$. Our results recover and improve some results in the literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The fibering method approach for a non-linear Schrödinger equation coupled with the electromagnetic field\",\"authors\":\"G. Siciliano, K. Silva\",\"doi\":\"10.5565/publmat6422001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study, with respect to the parameter $q\\\\neq0$, the following Schrodinger-Bopp-Podolsky system in $\\\\mathbb R^{3}$ \\\\begin{equation*} \\\\left\\\\{ \\\\begin{aligned} -&\\\\Delta u+\\\\omega u+q^2\\\\phi u=|u|^{p-2}u, \\\\\\\\ &-\\\\Delta \\\\phi+a^2\\\\Delta^2 \\\\phi = 4\\\\pi u^2, \\\\end{aligned} \\\\right. \\n\\\\end{equation*} where $p\\\\in(2,3], \\\\omega>0, a\\\\geq0$ are fixed. We prove, by means of the fibering approach, that the system has no solutions at all for large values of $q's$, and has two radial solutions for small $q's$. We give also qualitative properties about the energy level of the solutions and a variational characterization of these extremals values of $q$. Our results recover and improve some results in the literature.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6422001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6422001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

对于参数$q\neq0$,我们研究如下的$\mathbb R^{3}$\begin{equation*} \left\{ \begin{aligned} -&\Delta u+\omega u+q^2\phi u=|u|^{p-2}u, \\ &-\Delta \phi+a^2\Delta^2 \phi = 4\pi u^2, \end{aligned} \right. \end{equation*}中的薛定谔-波普-波多尔斯基系统,其中$p\in(2,3], \omega>0, a\geq0$是固定的。利用纤维化方法证明了系统在较大的$q's$值下无解,在较小的$q's$值下有两个径向解。我们还给出了解的能级的定性性质和$q$的这些极值的变分表征。我们的结果恢复和改进了文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The fibering method approach for a non-linear Schrödinger equation coupled with the electromagnetic field
We study, with respect to the parameter $q\neq0$, the following Schrodinger-Bopp-Podolsky system in $\mathbb R^{3}$ \begin{equation*} \left\{ \begin{aligned} -&\Delta u+\omega u+q^2\phi u=|u|^{p-2}u, \\ &-\Delta \phi+a^2\Delta^2 \phi = 4\pi u^2, \end{aligned} \right. \end{equation*} where $p\in(2,3], \omega>0, a\geq0$ are fixed. We prove, by means of the fibering approach, that the system has no solutions at all for large values of $q's$, and has two radial solutions for small $q's$. We give also qualitative properties about the energy level of the solutions and a variational characterization of these extremals values of $q$. Our results recover and improve some results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信