在hÖlder地图和主要缺口上

IF 0.1 Q4 MATHEMATICS
Haipeng Chen, J. Fraser
{"title":"在hÖlder地图和主要缺口上","authors":"Haipeng Chen, J. Fraser","doi":"10.14321/REALANALEXCH.46.2.0523","DOIUrl":null,"url":null,"abstract":"Let $p_n$ denote the $n$th prime, and consider the function $1/n \\mapsto 1/p_n$ which maps the reciprocals of the positive integers bijectively to the reciprocals of the primes. We show that Holder continuity of this function is equivalent to a parameterised family of Cramer type estimates on the gaps between successive primes. Here the parameterisation comes from the Holder exponent. In particular, we show that Cramer's conjecture is equivalent to the map $1/n \\mapsto 1/p_n$ being Lipschitz. On the other hand, we show that the inverse map $1/p_n \\mapsto 1/n$ is Holder of all orders but not Lipshitz and this is independent of Cramer's conjecture.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON HÖLDER MAPS AND PRIME GAPS\",\"authors\":\"Haipeng Chen, J. Fraser\",\"doi\":\"10.14321/REALANALEXCH.46.2.0523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p_n$ denote the $n$th prime, and consider the function $1/n \\\\mapsto 1/p_n$ which maps the reciprocals of the positive integers bijectively to the reciprocals of the primes. We show that Holder continuity of this function is equivalent to a parameterised family of Cramer type estimates on the gaps between successive primes. Here the parameterisation comes from the Holder exponent. In particular, we show that Cramer's conjecture is equivalent to the map $1/n \\\\mapsto 1/p_n$ being Lipschitz. On the other hand, we show that the inverse map $1/p_n \\\\mapsto 1/n$ is Holder of all orders but not Lipshitz and this is independent of Cramer's conjecture.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/REALANALEXCH.46.2.0523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$p_n$表示第$n$个素数,并考虑函数$1/n\mapsto 1/p_n$,它将正整数的倒数双射映射到素数的倒数。我们证明了该函数的Holder连续性等价于连续素数之间的间隙上的Cramer型估计的参数化族。这里的参数化来自Holder指数。特别地,我们证明了Cramer猜想等价于映射$1/n\mapsto 1/p_n$是Lipschitz。另一方面,我们证明了逆映射$1/p_n\mapsto 1/n$是所有阶的Holder,而不是Lipshitz,这与Cramer猜想无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON HÖLDER MAPS AND PRIME GAPS
Let $p_n$ denote the $n$th prime, and consider the function $1/n \mapsto 1/p_n$ which maps the reciprocals of the positive integers bijectively to the reciprocals of the primes. We show that Holder continuity of this function is equivalent to a parameterised family of Cramer type estimates on the gaps between successive primes. Here the parameterisation comes from the Holder exponent. In particular, we show that Cramer's conjecture is equivalent to the map $1/n \mapsto 1/p_n$ being Lipschitz. On the other hand, we show that the inverse map $1/p_n \mapsto 1/n$ is Holder of all orders but not Lipshitz and this is independent of Cramer's conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信