Di Chen, Q. Pan, Ziqi Liu, Qile Shi, Lin Zhang, Jingguang Peng, Ying Li
{"title":"选择性激光熔融制备SS316L的组织与力学性能","authors":"Di Chen, Q. Pan, Ziqi Liu, Qile Shi, Lin Zhang, Jingguang Peng, Ying Li","doi":"10.1680/jemmr.22.00139","DOIUrl":null,"url":null,"abstract":"In this work, 316L stainless steel samples were prepared by selective laser melting (SLM) and the effects of the bulk laser energy density on the resulting density and mechanical properties were evaluated. The results show that the density and mechanical properties of SLM 316L stainless steel first improved then deteriorated with increasing bulk laser energy density. When the bulk laser energy density was 70.2 J·mm−3, the obtained tensile strength and yield strength vertical to the building direction were 720 and 546 MPa, respectively, which surpass the design requirements for forged 316L stainless steel. The influence of the microstructure on the mechanical properties of SLM 316L stainless steel is also discussed. The purpose of this research was to provide experimental data and a theoretical basis for high-performance 316L stainless steel fabricated by SLM.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstructure and mechanical properties of SS316L prepared by selective laser melting\",\"authors\":\"Di Chen, Q. Pan, Ziqi Liu, Qile Shi, Lin Zhang, Jingguang Peng, Ying Li\",\"doi\":\"10.1680/jemmr.22.00139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, 316L stainless steel samples were prepared by selective laser melting (SLM) and the effects of the bulk laser energy density on the resulting density and mechanical properties were evaluated. The results show that the density and mechanical properties of SLM 316L stainless steel first improved then deteriorated with increasing bulk laser energy density. When the bulk laser energy density was 70.2 J·mm−3, the obtained tensile strength and yield strength vertical to the building direction were 720 and 546 MPa, respectively, which surpass the design requirements for forged 316L stainless steel. The influence of the microstructure on the mechanical properties of SLM 316L stainless steel is also discussed. The purpose of this research was to provide experimental data and a theoretical basis for high-performance 316L stainless steel fabricated by SLM.\",\"PeriodicalId\":11537,\"journal\":{\"name\":\"Emerging Materials Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jemmr.22.00139\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.22.00139","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure and mechanical properties of SS316L prepared by selective laser melting
In this work, 316L stainless steel samples were prepared by selective laser melting (SLM) and the effects of the bulk laser energy density on the resulting density and mechanical properties were evaluated. The results show that the density and mechanical properties of SLM 316L stainless steel first improved then deteriorated with increasing bulk laser energy density. When the bulk laser energy density was 70.2 J·mm−3, the obtained tensile strength and yield strength vertical to the building direction were 720 and 546 MPa, respectively, which surpass the design requirements for forged 316L stainless steel. The influence of the microstructure on the mechanical properties of SLM 316L stainless steel is also discussed. The purpose of this research was to provide experimental data and a theoretical basis for high-performance 316L stainless steel fabricated by SLM.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.