Hiromichi Sato, T. Hara, Chihiro Otsuka, Yasuko Arao, Yoshiko Tsuji, Yumiko Hamano, Mirei Ogita, E. di Luccio, Takaaki Hirotsu, A. Vecchione, Hideshi Ishii
{"title":"RNA甲基化:癌症和严重急性呼吸综合征-冠状病毒-2感染免疫反应中一个新兴的共同靶点","authors":"Hiromichi Sato, T. Hara, Chihiro Otsuka, Yasuko Arao, Yoshiko Tsuji, Yumiko Hamano, Mirei Ogita, E. di Luccio, Takaaki Hirotsu, A. Vecchione, Hideshi Ishii","doi":"10.37349/emed.2023.00127","DOIUrl":null,"url":null,"abstract":"m6A RNA methylation, a predominant type of RNA modification, is involved in regulating mRNA splicing, stability, and translation as well as the interaction between nucleoproteins and noncoding RNAs. Recent studies have revealed that m6A RNA methylation plays a critical role in the self-to-non-self-recognition of immune cells against endogenous mutations in cancer and exogenous organism-related infections. As an epigenetic mechanism, m6A RNA modification induces immune cell signal transduction, which is altered in the tumor microenvironment, as detected in liquid biopsy. Furthermore, m6A RNA methylation-related inflammation is involved in the cellular response to viral infections, including the emerging severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Given the importance of the immune response in maintaining homeostasis in higher eukaryotes, m6A RNA methylation could be useful not only for the early detection of cancer but also for SARS-CoV-2 screening during a global pandemic.","PeriodicalId":72999,"journal":{"name":"Exploration of medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m6 RNA methylation: an emerging common target in the immune response to cancer and severe acute respiratory syndrome-coronavirus-2 infection\",\"authors\":\"Hiromichi Sato, T. Hara, Chihiro Otsuka, Yasuko Arao, Yoshiko Tsuji, Yumiko Hamano, Mirei Ogita, E. di Luccio, Takaaki Hirotsu, A. Vecchione, Hideshi Ishii\",\"doi\":\"10.37349/emed.2023.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"m6A RNA methylation, a predominant type of RNA modification, is involved in regulating mRNA splicing, stability, and translation as well as the interaction between nucleoproteins and noncoding RNAs. Recent studies have revealed that m6A RNA methylation plays a critical role in the self-to-non-self-recognition of immune cells against endogenous mutations in cancer and exogenous organism-related infections. As an epigenetic mechanism, m6A RNA modification induces immune cell signal transduction, which is altered in the tumor microenvironment, as detected in liquid biopsy. Furthermore, m6A RNA methylation-related inflammation is involved in the cellular response to viral infections, including the emerging severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Given the importance of the immune response in maintaining homeostasis in higher eukaryotes, m6A RNA methylation could be useful not only for the early detection of cancer but also for SARS-CoV-2 screening during a global pandemic.\",\"PeriodicalId\":72999,\"journal\":{\"name\":\"Exploration of medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration of medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37349/emed.2023.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/emed.2023.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
m6 RNA methylation: an emerging common target in the immune response to cancer and severe acute respiratory syndrome-coronavirus-2 infection
m6A RNA methylation, a predominant type of RNA modification, is involved in regulating mRNA splicing, stability, and translation as well as the interaction between nucleoproteins and noncoding RNAs. Recent studies have revealed that m6A RNA methylation plays a critical role in the self-to-non-self-recognition of immune cells against endogenous mutations in cancer and exogenous organism-related infections. As an epigenetic mechanism, m6A RNA modification induces immune cell signal transduction, which is altered in the tumor microenvironment, as detected in liquid biopsy. Furthermore, m6A RNA methylation-related inflammation is involved in the cellular response to viral infections, including the emerging severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Given the importance of the immune response in maintaining homeostasis in higher eukaryotes, m6A RNA methylation could be useful not only for the early detection of cancer but also for SARS-CoV-2 screening during a global pandemic.