具有不完全CSI的车辆S-LSTM NOMA随时间选择性Nakagami-m衰落的研究

Q4 Engineering
Ravi Shankar, Bhanu Pratap Chaudhar, R. Mishra
{"title":"具有不完全CSI的车辆S-LSTM NOMA随时间选择性Nakagami-m衰落的研究","authors":"Ravi Shankar, Bhanu Pratap Chaudhar, R. Mishra","doi":"10.26636/jtit.2022.165722","DOIUrl":null,"url":null,"abstract":" In this paper, the performance of a deep learning-based multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) system is investigated for 5G radio communication networks. We consider independent and identi-cally distributed (i.i.d.) Nakagami- m fading links to prove that when using MIMO with the NOMA system, the outage probability (OP) and end-to-end symbol error rate (SER) improve, even in the presence of imperfect channel state information (CSI) and successive interference cancellation (SIC) errors. Furthermore, the stacked long short-term memory (S-LSTM) algorithm is employed to improve the system’s performance, even under time-selective channel conditions and in the presence of termi-nal’s mobility. For vehicular NOMA networks, OP, SER, and ergodic sum rate have been formulated. Simulations show that an S-LSTM-based DL-NOMA receiver outperforms least square (LS) and minimum mean square error (MMSE) receivers. Furthermore, it has been discovered that the performance of the end-to-end system degrades with the growing amount of node mobility, or if CSI knowledge remains poor. Simulated curves are in close agreement with the analytical results.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Vehicular S-LSTM NOMA Over Time Selective Nakagami-m Fading with Imperfect CSI\",\"authors\":\"Ravi Shankar, Bhanu Pratap Chaudhar, R. Mishra\",\"doi\":\"10.26636/jtit.2022.165722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" In this paper, the performance of a deep learning-based multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) system is investigated for 5G radio communication networks. We consider independent and identi-cally distributed (i.i.d.) Nakagami- m fading links to prove that when using MIMO with the NOMA system, the outage probability (OP) and end-to-end symbol error rate (SER) improve, even in the presence of imperfect channel state information (CSI) and successive interference cancellation (SIC) errors. Furthermore, the stacked long short-term memory (S-LSTM) algorithm is employed to improve the system’s performance, even under time-selective channel conditions and in the presence of termi-nal’s mobility. For vehicular NOMA networks, OP, SER, and ergodic sum rate have been formulated. Simulations show that an S-LSTM-based DL-NOMA receiver outperforms least square (LS) and minimum mean square error (MMSE) receivers. Furthermore, it has been discovered that the performance of the end-to-end system degrades with the growing amount of node mobility, or if CSI knowledge remains poor. Simulated curves are in close agreement with the analytical results.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2022.165722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2022.165722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

 本文研究了基于深度学习的多输入多输出(MIMO)非正交多址(NOMA)系统在5G无线通信网络中的性能。我们考虑独立和同分布(i.i.d.)Nakagami-m衰落链路,以证明当在NOMA系统中使用MIMO时,即使在存在不完美信道状态信息(CSI)和连续干扰消除(SIC)错误的情况下,中断概率(OP)和端到端符号错误率(SER)也会提高。此外,即使在时间选择性信道条件下和存在终端移动性的情况下,也采用堆叠长短期存储器(S-LSTM)算法来提高系统的性能。对于车载NOMA网络,已经制定了OP、SER和遍历和速率。仿真表明,基于S-LSTM的DL-NOMA接收机优于最小二乘(LS)和最小均方误差(MMSE)接收机。此外,已经发现端到端系统的性能随着节点移动性的增加而降低,或者如果CSI知识仍然很差。模拟曲线与分析结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Vehicular S-LSTM NOMA Over Time Selective Nakagami-m Fading with Imperfect CSI
 In this paper, the performance of a deep learning-based multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) system is investigated for 5G radio communication networks. We consider independent and identi-cally distributed (i.i.d.) Nakagami- m fading links to prove that when using MIMO with the NOMA system, the outage probability (OP) and end-to-end symbol error rate (SER) improve, even in the presence of imperfect channel state information (CSI) and successive interference cancellation (SIC) errors. Furthermore, the stacked long short-term memory (S-LSTM) algorithm is employed to improve the system’s performance, even under time-selective channel conditions and in the presence of termi-nal’s mobility. For vehicular NOMA networks, OP, SER, and ergodic sum rate have been formulated. Simulations show that an S-LSTM-based DL-NOMA receiver outperforms least square (LS) and minimum mean square error (MMSE) receivers. Furthermore, it has been discovered that the performance of the end-to-end system degrades with the growing amount of node mobility, or if CSI knowledge remains poor. Simulated curves are in close agreement with the analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信