Alicia Raquel Pérez de Rosas, María Florencia Restelli, Beatriz Alicia García
{"title":"阿根廷Chagas病媒感染三角虫种群的时空遗传结构","authors":"Alicia Raquel Pérez de Rosas, María Florencia Restelli, Beatriz Alicia García","doi":"10.1111/jzs.12552","DOIUrl":null,"url":null,"abstract":"<p><i>Triatoma infestans</i> (Hemiptera, Reduvidae) is the main vector of Chagas disease in South America between the latitudes 10° and 46° S. The analysis of the spatial genetic structure of populations at fine scale can provide insight into the dynamic population and evolutionary process of <i>T. infestans</i> and a complementary approach to help improve vector control strategies. Spatio-temporal analysis of the genetic structure of <i>T. infestans</i> populations was performed using inter-simple sequence repeats markers. A total of 242 polymorphic bands were detected from 234 individuals captured in different houses from the locality of San Martín and in one surrounding area (Capayan department, Catamarca province, Argentina) in October 2007 and May 2010. Significant levels of genetic differentiation were detected among the collection sites in both temporal samples, including the different sampled sites within the same house. These results confirm a high degree of subdivision in <i>T. infestans</i> populations. Comparative analysis between the first and the second sample indicated that they form two different groups. The genetic differentiation level was higher among samples from the second capture compared to the first. It is probable that in subdivided populations, when restricted gene flow is sustained over time, the genetic drift leads to accentuate the differentiation among subpopulations. The spatial autocorrelation analysis indicated that the dispersion range could occur around 500–550 m. Therefore, the probability of reinfestation by active dispersal of the insect could be reduced by implementing control and surveillance within an approximate radius of 500–550 m around the infested area.</p>","PeriodicalId":54751,"journal":{"name":"Journal of Zoological Systematics and Evolutionary Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal genetic structure in populations of the Chagas’ disease vector Triatoma infestans from Argentina\",\"authors\":\"Alicia Raquel Pérez de Rosas, María Florencia Restelli, Beatriz Alicia García\",\"doi\":\"10.1111/jzs.12552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Triatoma infestans</i> (Hemiptera, Reduvidae) is the main vector of Chagas disease in South America between the latitudes 10° and 46° S. The analysis of the spatial genetic structure of populations at fine scale can provide insight into the dynamic population and evolutionary process of <i>T. infestans</i> and a complementary approach to help improve vector control strategies. Spatio-temporal analysis of the genetic structure of <i>T. infestans</i> populations was performed using inter-simple sequence repeats markers. A total of 242 polymorphic bands were detected from 234 individuals captured in different houses from the locality of San Martín and in one surrounding area (Capayan department, Catamarca province, Argentina) in October 2007 and May 2010. Significant levels of genetic differentiation were detected among the collection sites in both temporal samples, including the different sampled sites within the same house. These results confirm a high degree of subdivision in <i>T. infestans</i> populations. Comparative analysis between the first and the second sample indicated that they form two different groups. The genetic differentiation level was higher among samples from the second capture compared to the first. It is probable that in subdivided populations, when restricted gene flow is sustained over time, the genetic drift leads to accentuate the differentiation among subpopulations. The spatial autocorrelation analysis indicated that the dispersion range could occur around 500–550 m. Therefore, the probability of reinfestation by active dispersal of the insect could be reduced by implementing control and surveillance within an approximate radius of 500–550 m around the infested area.</p>\",\"PeriodicalId\":54751,\"journal\":{\"name\":\"Journal of Zoological Systematics and Evolutionary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zoological Systematics and Evolutionary Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jzs.12552\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zoological Systematics and Evolutionary Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jzs.12552","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Spatio-temporal genetic structure in populations of the Chagas’ disease vector Triatoma infestans from Argentina
Triatoma infestans (Hemiptera, Reduvidae) is the main vector of Chagas disease in South America between the latitudes 10° and 46° S. The analysis of the spatial genetic structure of populations at fine scale can provide insight into the dynamic population and evolutionary process of T. infestans and a complementary approach to help improve vector control strategies. Spatio-temporal analysis of the genetic structure of T. infestans populations was performed using inter-simple sequence repeats markers. A total of 242 polymorphic bands were detected from 234 individuals captured in different houses from the locality of San Martín and in one surrounding area (Capayan department, Catamarca province, Argentina) in October 2007 and May 2010. Significant levels of genetic differentiation were detected among the collection sites in both temporal samples, including the different sampled sites within the same house. These results confirm a high degree of subdivision in T. infestans populations. Comparative analysis between the first and the second sample indicated that they form two different groups. The genetic differentiation level was higher among samples from the second capture compared to the first. It is probable that in subdivided populations, when restricted gene flow is sustained over time, the genetic drift leads to accentuate the differentiation among subpopulations. The spatial autocorrelation analysis indicated that the dispersion range could occur around 500–550 m. Therefore, the probability of reinfestation by active dispersal of the insect could be reduced by implementing control and surveillance within an approximate radius of 500–550 m around the infested area.
期刊介绍:
The Journal of Zoological Systematics and Evolutionary Research (JZSER)is a peer-reviewed, international forum for publication of high-quality research on systematic zoology and evolutionary biology. The aim of the journal is to provoke a synthesis of results from morphology, physiology, animal geography, ecology, ethology, evolutionary genetics, population genetics, developmental biology and molecular biology. Besides empirical papers, theoretical contributions and review articles are welcome. Integrative and interdisciplinary contributions are particularly preferred. Purely taxonomic and predominantly cytogenetic manuscripts will not be accepted except in rare cases, and then only at the Editor-in-Chief''s discretion. The same is true for phylogenetic studies based solely on mitochondrial marker sequences without any additional methodological approach. To encourage scientific exchange and discussions, authors are invited to send critical comments on previously published articles. Only papers in English language are accepted.