黎曼流形上若干问题的存在性结果

IF 0.7 4区 数学 Q2 MATHEMATICS
Giovanni Molica Bisci, L. Vilasi, Dušan D. Repovš
{"title":"黎曼流形上若干问题的存在性结果","authors":"Giovanni Molica Bisci, L. Vilasi, Dušan D. Repovš","doi":"10.4310/CAG.2020.v28.n3.a6","DOIUrl":null,"url":null,"abstract":"By using variational techniques we provide new existence results for Yamabe-type equations with subcritical perturbations set on a compact $d$-dimensional ($d\\geq 3$) Riemannian manifold without boundary. As a direct consequence of our main theorems, we prove the existence of at least one solution to the following singular Yamabe-type problem $$ \\left\\lbrace \\begin{array}{ll} -\\Delta_g w + \\alpha(\\sigma)w = \\mu K(\\sigma) w^\\frac{d+2}{d-2} +\\lambda \\left( w^{r-1} + f(w)\\right), \\quad \\sigma\\in\\mathcal{M} &\\\\ &\\\\ w\\in H^2_\\alpha(\\mathcal{M}), \\quad w>0 \\ \\ \\mbox{in} \\ \\ \\mathcal{M} & \\end{array} \\right.$$ where, as usual, $\\Delta_g$ denotes the Laplace-Beltrami operator on $(\\mathcal{M},g)$, $\\alpha, K:\\mathcal{M}\\to\\mathbb{R}$ are positive (essentially) bounded functions, $r\\in(0,1)$, and $f:[0,+\\infty)\\to[0,+\\infty)$ is a subcritical continuous function. Restricting ourselves to the unit sphere ${\\mathbb{S}}^d$ via the stereographic projection, we also solve some parametrized Emden-Fowler equations in the Euclidean case.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence results for some problems on Riemannian manifolds\",\"authors\":\"Giovanni Molica Bisci, L. Vilasi, Dušan D. Repovš\",\"doi\":\"10.4310/CAG.2020.v28.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using variational techniques we provide new existence results for Yamabe-type equations with subcritical perturbations set on a compact $d$-dimensional ($d\\\\geq 3$) Riemannian manifold without boundary. As a direct consequence of our main theorems, we prove the existence of at least one solution to the following singular Yamabe-type problem $$ \\\\left\\\\lbrace \\\\begin{array}{ll} -\\\\Delta_g w + \\\\alpha(\\\\sigma)w = \\\\mu K(\\\\sigma) w^\\\\frac{d+2}{d-2} +\\\\lambda \\\\left( w^{r-1} + f(w)\\\\right), \\\\quad \\\\sigma\\\\in\\\\mathcal{M} &\\\\\\\\ &\\\\\\\\ w\\\\in H^2_\\\\alpha(\\\\mathcal{M}), \\\\quad w>0 \\\\ \\\\ \\\\mbox{in} \\\\ \\\\ \\\\mathcal{M} & \\\\end{array} \\\\right.$$ where, as usual, $\\\\Delta_g$ denotes the Laplace-Beltrami operator on $(\\\\mathcal{M},g)$, $\\\\alpha, K:\\\\mathcal{M}\\\\to\\\\mathbb{R}$ are positive (essentially) bounded functions, $r\\\\in(0,1)$, and $f:[0,+\\\\infty)\\\\to[0,+\\\\infty)$ is a subcritical continuous function. Restricting ourselves to the unit sphere ${\\\\mathbb{S}}^d$ via the stereographic projection, we also solve some parametrized Emden-Fowler equations in the Euclidean case.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CAG.2020.v28.n3.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CAG.2020.v28.n3.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

利用变分技术,给出了紧致$d$维($d\geq 3$)无边界黎曼流形上具有次临界摄动集的yamabe型方程的存在性的新结果。作为主要定理的直接结果,我们证明了以下奇异yamabe型问题$$ \left\lbrace \begin{array}{ll} -\Delta_g w + \alpha(\sigma)w = \mu K(\sigma) w^\frac{d+2}{d-2} +\lambda \left( w^{r-1} + f(w)\right), \quad \sigma\in\mathcal{M} &\\ &\\ w\in H^2_\alpha(\mathcal{M}), \quad w>0 \ \ \mbox{in} \ \ \mathcal{M} & \end{array} \right.$$至少有一个解的存在性,其中,$\Delta_g$表示$(\mathcal{M},g)$上的Laplace-Beltrami算子,$\alpha, K:\mathcal{M}\to\mathbb{R}$是正(本质上)有界函数,$r\in(0,1)$, $f:[0,+\infty)\to[0,+\infty)$是次临界连续函数。通过立体投影,我们将自己限制在单位球${\mathbb{S}}^d$上,还求解了欧几里得情况下的一些参数化Emden-Fowler方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence results for some problems on Riemannian manifolds
By using variational techniques we provide new existence results for Yamabe-type equations with subcritical perturbations set on a compact $d$-dimensional ($d\geq 3$) Riemannian manifold without boundary. As a direct consequence of our main theorems, we prove the existence of at least one solution to the following singular Yamabe-type problem $$ \left\lbrace \begin{array}{ll} -\Delta_g w + \alpha(\sigma)w = \mu K(\sigma) w^\frac{d+2}{d-2} +\lambda \left( w^{r-1} + f(w)\right), \quad \sigma\in\mathcal{M} &\\ &\\ w\in H^2_\alpha(\mathcal{M}), \quad w>0 \ \ \mbox{in} \ \ \mathcal{M} & \end{array} \right.$$ where, as usual, $\Delta_g$ denotes the Laplace-Beltrami operator on $(\mathcal{M},g)$, $\alpha, K:\mathcal{M}\to\mathbb{R}$ are positive (essentially) bounded functions, $r\in(0,1)$, and $f:[0,+\infty)\to[0,+\infty)$ is a subcritical continuous function. Restricting ourselves to the unit sphere ${\mathbb{S}}^d$ via the stereographic projection, we also solve some parametrized Emden-Fowler equations in the Euclidean case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信