总秩奇的经典单李2-代数和总秩4的对偶李2-代数

IF 0.6 4区 数学 Q3 MATHEMATICS
Carlos Rafael Payares Guevara, Fabi'an Antonio Arias Amaya
{"title":"总秩奇的经典单李2-代数和总秩4的对偶李2-代数","authors":"Carlos Rafael Payares Guevara, Fabi'an Antonio Arias Amaya","doi":"10.33044/REVUMA.1555","DOIUrl":null,"url":null,"abstract":". After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the sim- ple contragredient Lie 2-algebra G ( F 4 ,a ) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G ( F 4 ,a ).","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4\",\"authors\":\"Carlos Rafael Payares Guevara, Fabi'an Antonio Arias Amaya\",\"doi\":\"10.33044/REVUMA.1555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the sim- ple contragredient Lie 2-algebra G ( F 4 ,a ) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G ( F 4 ,a ).\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/REVUMA.1555\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/REVUMA.1555","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

.在特征p>3的域上的单李代数的分类之后,在有限维李代数理论中尚未解决的主要问题是特征2的域上单李代数。该分类问题的第一个结果确保了特征为2的代数封闭域上的所有绝对秩为1的有限维李代数都是可解的。在特征为2的代数封闭域上描述绝对托拉秩(分别为托拉秩)3的有限维的简单李代数(分别为李2-代数)仍然是一个悬而未决的问题。本文证明了不存在秩为奇数的经典型单李2-代数,并且证明了维数为34的单反李2-代数G(F4,a)的秩为4。此外,我们给出了G(F4,a)的Cartan分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
. After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the sim- ple contragredient Lie 2-algebra G ( F 4 ,a ) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G ( F 4 ,a ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信