H. Kazmi, Ingrid Munné-Collado, Khaoula Tidriri, L. Nordström, F. Gielen, J. Driesen
{"title":"数据科学与能源:欧洲高等教育课程设计与教学的经验教训","authors":"H. Kazmi, Ingrid Munné-Collado, Khaoula Tidriri, L. Nordström, F. Gielen, J. Driesen","doi":"10.1162/99608f92.fd504fc4","DOIUrl":null,"url":null,"abstract":"Data science is seen as a key enabler for technologies that help decarbonize global energy use. However, the energy sector continues to struggle to attract and train enough data scientists. The primary reason for this is the lack of emphasis on data science in most graduate programs in energy engineering, and the high barriers of entry for data scientists from other sectors. In this article, we present a snapshot of the data science–related curriculum being taught in graduate energy programs in four different European universities as well as include feedback we received from students and alumni of these programs. While knowledge of data science remains low across the board, students in these programs already recognize data science as an important element of their future professional careers. We also present findings from running three separate iterations of an energy data science course we developed in light of this feedback—one of these iterations was offered only in KU Leuven (Belgium), while the other two were accessible to students at all four universities. In the article, we also discuss challenges and opportunities arising from designing and delivering courses in a cross-university context. This foundational course and others like it are seen as a necessary means to enable students to take more specialized courses in data science, and eventually contribute toward realizing a sustainable energy transition and meeting climate change mitigation objectives.","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Science and Energy: Some Lessons from Europe on Higher Education Course Design and Delivery\",\"authors\":\"H. Kazmi, Ingrid Munné-Collado, Khaoula Tidriri, L. Nordström, F. Gielen, J. Driesen\",\"doi\":\"10.1162/99608f92.fd504fc4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data science is seen as a key enabler for technologies that help decarbonize global energy use. However, the energy sector continues to struggle to attract and train enough data scientists. The primary reason for this is the lack of emphasis on data science in most graduate programs in energy engineering, and the high barriers of entry for data scientists from other sectors. In this article, we present a snapshot of the data science–related curriculum being taught in graduate energy programs in four different European universities as well as include feedback we received from students and alumni of these programs. While knowledge of data science remains low across the board, students in these programs already recognize data science as an important element of their future professional careers. We also present findings from running three separate iterations of an energy data science course we developed in light of this feedback—one of these iterations was offered only in KU Leuven (Belgium), while the other two were accessible to students at all four universities. In the article, we also discuss challenges and opportunities arising from designing and delivering courses in a cross-university context. This foundational course and others like it are seen as a necessary means to enable students to take more specialized courses in data science, and eventually contribute toward realizing a sustainable energy transition and meeting climate change mitigation objectives.\",\"PeriodicalId\":73195,\"journal\":{\"name\":\"Harvard data science review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harvard data science review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/99608f92.fd504fc4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harvard data science review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/99608f92.fd504fc4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Science and Energy: Some Lessons from Europe on Higher Education Course Design and Delivery
Data science is seen as a key enabler for technologies that help decarbonize global energy use. However, the energy sector continues to struggle to attract and train enough data scientists. The primary reason for this is the lack of emphasis on data science in most graduate programs in energy engineering, and the high barriers of entry for data scientists from other sectors. In this article, we present a snapshot of the data science–related curriculum being taught in graduate energy programs in four different European universities as well as include feedback we received from students and alumni of these programs. While knowledge of data science remains low across the board, students in these programs already recognize data science as an important element of their future professional careers. We also present findings from running three separate iterations of an energy data science course we developed in light of this feedback—one of these iterations was offered only in KU Leuven (Belgium), while the other two were accessible to students at all four universities. In the article, we also discuss challenges and opportunities arising from designing and delivering courses in a cross-university context. This foundational course and others like it are seen as a necessary means to enable students to take more specialized courses in data science, and eventually contribute toward realizing a sustainable energy transition and meeting climate change mitigation objectives.