Liora Malki-Epshtein, Filipa Adzic, Ben M Roberts, Elizabeth Abigail Hathway, Christopher Iddon, Murat Mustafa, Malcolm Cook
{"title":"对人群聚集场所室内空气质量进行测量和快速评估,评估通风性能,减少SARS-CoV-2的气溶胶传播","authors":"Liora Malki-Epshtein, Filipa Adzic, Ben M Roberts, Elizabeth Abigail Hathway, Christopher Iddon, Murat Mustafa, Malcolm Cook","doi":"10.1177/01436244221137995","DOIUrl":null,"url":null,"abstract":"<p><p>To assess risk factors for COVID-19 transmission and address the closure of mass gathering events since March 2020, the UK Government ran the Events Research Programme (ERP), following which it reopened live events in sports, music, and culture in July 2021. We report the rapid post-occupancy evaluation of Indoor Air Quality (IAQ) and associated long-range airborne transmission risk conducted in the Environmental Study of the ERP. Ten large venues around the UK were monitored with CO<sub>2</sub> sensors at a high spatial and temporal resolution during 90 events. An IAQ Index based on CO<sub>2</sub> concentration was developed, and all monitored spaces were classified in bands from A to G based on their average and maximum CO<sub>2</sub> concentrations from all events. High resolution monitoring and the IAQ Index depicted the overall state of ventilation at live events, and allowed identification of issues with ventilation effectiveness and distribution, and of spaces with poor ventilation and the settings in which long-range airborne transmission risk may be increased. In numerous settings, CO<sub>2</sub> concentrations were found to follow patterns relating to event management and specific occupancy of spaces around the venues. Good ventilation was observed in 90% of spaces monitored for given occupancies. <b><i>Practical applications:</i></b> High-resolution monitoring of indoor CO<sub>2</sub> concentrations is necessary to detect the spatial variation of indoor air quality (IAQ) in large mass gathering event venues. The paper summarises COVID-19 ventilation guidance for buildings and defines a methodology for measurement and rapid assessment of IAQ during occupancy at live events that can be implemented by venue managers. Comparisons of the CO<sub>2</sub> concentrations measured during the events identified the spaces at high risk of long-range transmission of airborne pathogens. Building operators should be mindful of the ventilation strategies used relative to the total occupancy in different spaces and the occupant's activities.</p>","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measurement and rapid assessment of indoor air quality at mass gathering events to assess ventilation performance and reduce aerosol transmission of SARS-CoV-2.\",\"authors\":\"Liora Malki-Epshtein, Filipa Adzic, Ben M Roberts, Elizabeth Abigail Hathway, Christopher Iddon, Murat Mustafa, Malcolm Cook\",\"doi\":\"10.1177/01436244221137995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To assess risk factors for COVID-19 transmission and address the closure of mass gathering events since March 2020, the UK Government ran the Events Research Programme (ERP), following which it reopened live events in sports, music, and culture in July 2021. We report the rapid post-occupancy evaluation of Indoor Air Quality (IAQ) and associated long-range airborne transmission risk conducted in the Environmental Study of the ERP. Ten large venues around the UK were monitored with CO<sub>2</sub> sensors at a high spatial and temporal resolution during 90 events. An IAQ Index based on CO<sub>2</sub> concentration was developed, and all monitored spaces were classified in bands from A to G based on their average and maximum CO<sub>2</sub> concentrations from all events. High resolution monitoring and the IAQ Index depicted the overall state of ventilation at live events, and allowed identification of issues with ventilation effectiveness and distribution, and of spaces with poor ventilation and the settings in which long-range airborne transmission risk may be increased. In numerous settings, CO<sub>2</sub> concentrations were found to follow patterns relating to event management and specific occupancy of spaces around the venues. Good ventilation was observed in 90% of spaces monitored for given occupancies. <b><i>Practical applications:</i></b> High-resolution monitoring of indoor CO<sub>2</sub> concentrations is necessary to detect the spatial variation of indoor air quality (IAQ) in large mass gathering event venues. The paper summarises COVID-19 ventilation guidance for buildings and defines a methodology for measurement and rapid assessment of IAQ during occupancy at live events that can be implemented by venue managers. Comparisons of the CO<sub>2</sub> concentrations measured during the events identified the spaces at high risk of long-range transmission of airborne pathogens. Building operators should be mindful of the ventilation strategies used relative to the total occupancy in different spaces and the occupant's activities.</p>\",\"PeriodicalId\":50724,\"journal\":{\"name\":\"Building Services Engineering Research & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01436244221137995\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221137995","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Measurement and rapid assessment of indoor air quality at mass gathering events to assess ventilation performance and reduce aerosol transmission of SARS-CoV-2.
To assess risk factors for COVID-19 transmission and address the closure of mass gathering events since March 2020, the UK Government ran the Events Research Programme (ERP), following which it reopened live events in sports, music, and culture in July 2021. We report the rapid post-occupancy evaluation of Indoor Air Quality (IAQ) and associated long-range airborne transmission risk conducted in the Environmental Study of the ERP. Ten large venues around the UK were monitored with CO2 sensors at a high spatial and temporal resolution during 90 events. An IAQ Index based on CO2 concentration was developed, and all monitored spaces were classified in bands from A to G based on their average and maximum CO2 concentrations from all events. High resolution monitoring and the IAQ Index depicted the overall state of ventilation at live events, and allowed identification of issues with ventilation effectiveness and distribution, and of spaces with poor ventilation and the settings in which long-range airborne transmission risk may be increased. In numerous settings, CO2 concentrations were found to follow patterns relating to event management and specific occupancy of spaces around the venues. Good ventilation was observed in 90% of spaces monitored for given occupancies. Practical applications: High-resolution monitoring of indoor CO2 concentrations is necessary to detect the spatial variation of indoor air quality (IAQ) in large mass gathering event venues. The paper summarises COVID-19 ventilation guidance for buildings and defines a methodology for measurement and rapid assessment of IAQ during occupancy at live events that can be implemented by venue managers. Comparisons of the CO2 concentrations measured during the events identified the spaces at high risk of long-range transmission of airborne pathogens. Building operators should be mindful of the ventilation strategies used relative to the total occupancy in different spaces and the occupant's activities.
期刊介绍:
Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.