美国小型马品种单胎妊娠和新生儿期的心电图特征

IF 0.2 4区 农林科学 Q4 VETERINARY SCIENCES
Juliana Almeida Nogueira Da Gama, G. A. Campos, Raphael Tortorelli Teixeira, Mirian Harumi Tsunemi, B. P. Santarosa, H. B. Hooper, M. Lourenço, S. Chiacchio
{"title":"美国小型马品种单胎妊娠和新生儿期的心电图特征","authors":"Juliana Almeida Nogueira Da Gama, G. A. Campos, Raphael Tortorelli Teixeira, Mirian Harumi Tsunemi, B. P. Santarosa, H. B. Hooper, M. Lourenço, S. Chiacchio","doi":"10.22456/1679-9216.111612","DOIUrl":null,"url":null,"abstract":"Background: During pregnancy, cardiovascular adaptations occur in order to meet maternal demands and adequate support for fetal development, but they are still unclear in the equine species, especially in the American Miniature horse breed. The main hemodynamic changes that occur during pregnancy are increased heart rate, cardiac output, and blood volume. It is necessary to use the reference values for the miniature breeds, in addition to the age range and reproductive condition, so the objective of this study was to evaluate the effect of pregnancy on electrocardiographic (ECG) parameters in mares and also of age in newborns foals of American Miniature horse breed. Materials, Methods & Results: Ten American Miniature Horse mares, between 7 and 19 years old (12.14 ± 4.05 years), 116.85 ± 24.09 kg of body weight were used in the experiment. All these mares were pluriparous, with 5.9 ± 3.5 of births, minimum of 2, and maximum of 12 foaling times. They were maintained in common social group in an indoor house stable with straw bed, with access to an outdoor paddock for several h per day. Twice a day they were fed with hay. Mineral supplements and water were available ad libitum. The ECG were obtained in 10 pregnant mares and in 10 neonates. All females were examined at a representative time of each trimester of pregnancy, at 30, 210, 300 days before and 21 days after delivery. Neonates were examined on different times: first 24 h after delivery, weekly on the 7th, 14th, 21st, 28th and 35th days of age. The ECG parameters considered were the heart rate and rhythm, duration and intervals (P, PR, QRS, QT, T) and amplitude (P, R, S, T) of ECG waves. The mean of pregnancy duration was 319.4 ± 4.97 days. Heart Rate (HR) varied between 51 to 59 bpm during pregnancy and 56 bpm on the 21st day after delivery. Comparing the clinical parameters of pregnant mares, non-pregnant mares and foal a difference was found for HR, Respiration Rate (RR) and Temperature (P = 0.001). All ECG parameters of pregnant, non-pregnant and foal mares showed a significant difference (P = 0.0001), except for the amplitude of the P1, P2 and R waves, which was similar for the 3 groups. The mean values of HR and amplitude of the positive T wave were higher in foals when compared to pregnant and non-pregnant mares, which in turn did not differ from each other. The mean duration of the P wave, PR segment, QRS complex, QT segment and T wave were the same among mares and greater than in foals. Comparing pregnant and non-pregnant mares, there was a difference in only 3 parameters: duration of the QTc segment, amplitude of the S wave and negative T wave. The non-pregnant mares had a longer duration of the QTc segment and a greater amplitude of the negative T wave, while the foals had a greater amplitude of the S wave. Discussion: Although this study did not measure HR at delivery time, it is worth to consider the action of the parasympathetic autonomic nervous system close to delivery, which reduces the HR of mares. This is because at delivery, sympathetic-adrenal activation should be avoided since the increase in sympathetic tone can cause uterine atony via B2 receptors. For this reason, it has been shown that, during physiological birth, horses are under parasympathetic control, and stress response mechanisms are not activated. It was conclude that the morphometry of the waves, intervals and ECG complexes, during the evolution of the reproductive state, the electrocardiographic aspects were generally associated with heart rate (PR and QT intervals). As for neonates, there was a discrepancy among the most of ECG parameters when compared to the adult female, regardless of reproductive status, clarifying the importance of ECG patterns not only for the breed, but also for the age group.","PeriodicalId":7182,"journal":{"name":"Acta Scientiae Veterinariae","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocardiographic Aspects of Singleton Pregnancy and Neonatal Period in American Miniature Horse Breed\",\"authors\":\"Juliana Almeida Nogueira Da Gama, G. A. Campos, Raphael Tortorelli Teixeira, Mirian Harumi Tsunemi, B. P. Santarosa, H. B. Hooper, M. Lourenço, S. Chiacchio\",\"doi\":\"10.22456/1679-9216.111612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: During pregnancy, cardiovascular adaptations occur in order to meet maternal demands and adequate support for fetal development, but they are still unclear in the equine species, especially in the American Miniature horse breed. The main hemodynamic changes that occur during pregnancy are increased heart rate, cardiac output, and blood volume. It is necessary to use the reference values for the miniature breeds, in addition to the age range and reproductive condition, so the objective of this study was to evaluate the effect of pregnancy on electrocardiographic (ECG) parameters in mares and also of age in newborns foals of American Miniature horse breed. Materials, Methods & Results: Ten American Miniature Horse mares, between 7 and 19 years old (12.14 ± 4.05 years), 116.85 ± 24.09 kg of body weight were used in the experiment. All these mares were pluriparous, with 5.9 ± 3.5 of births, minimum of 2, and maximum of 12 foaling times. They were maintained in common social group in an indoor house stable with straw bed, with access to an outdoor paddock for several h per day. Twice a day they were fed with hay. Mineral supplements and water were available ad libitum. The ECG were obtained in 10 pregnant mares and in 10 neonates. All females were examined at a representative time of each trimester of pregnancy, at 30, 210, 300 days before and 21 days after delivery. Neonates were examined on different times: first 24 h after delivery, weekly on the 7th, 14th, 21st, 28th and 35th days of age. The ECG parameters considered were the heart rate and rhythm, duration and intervals (P, PR, QRS, QT, T) and amplitude (P, R, S, T) of ECG waves. The mean of pregnancy duration was 319.4 ± 4.97 days. Heart Rate (HR) varied between 51 to 59 bpm during pregnancy and 56 bpm on the 21st day after delivery. Comparing the clinical parameters of pregnant mares, non-pregnant mares and foal a difference was found for HR, Respiration Rate (RR) and Temperature (P = 0.001). All ECG parameters of pregnant, non-pregnant and foal mares showed a significant difference (P = 0.0001), except for the amplitude of the P1, P2 and R waves, which was similar for the 3 groups. The mean values of HR and amplitude of the positive T wave were higher in foals when compared to pregnant and non-pregnant mares, which in turn did not differ from each other. The mean duration of the P wave, PR segment, QRS complex, QT segment and T wave were the same among mares and greater than in foals. Comparing pregnant and non-pregnant mares, there was a difference in only 3 parameters: duration of the QTc segment, amplitude of the S wave and negative T wave. The non-pregnant mares had a longer duration of the QTc segment and a greater amplitude of the negative T wave, while the foals had a greater amplitude of the S wave. Discussion: Although this study did not measure HR at delivery time, it is worth to consider the action of the parasympathetic autonomic nervous system close to delivery, which reduces the HR of mares. This is because at delivery, sympathetic-adrenal activation should be avoided since the increase in sympathetic tone can cause uterine atony via B2 receptors. For this reason, it has been shown that, during physiological birth, horses are under parasympathetic control, and stress response mechanisms are not activated. It was conclude that the morphometry of the waves, intervals and ECG complexes, during the evolution of the reproductive state, the electrocardiographic aspects were generally associated with heart rate (PR and QT intervals). As for neonates, there was a discrepancy among the most of ECG parameters when compared to the adult female, regardless of reproductive status, clarifying the importance of ECG patterns not only for the breed, but also for the age group.\",\"PeriodicalId\":7182,\"journal\":{\"name\":\"Acta Scientiae Veterinariae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Scientiae Veterinariae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.22456/1679-9216.111612\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiae Veterinariae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.22456/1679-9216.111612","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在怀孕期间,心血管适应是为了满足母亲的需求和对胎儿发育的充分支持,但在马物种中,尤其是在美国小型马品种中,这些适应仍然不清楚。妊娠期间发生的主要血液动力学变化是心率、心输出量和血容量增加。除了年龄范围和繁殖条件外,有必要使用小型品种的参考值,因此本研究的目的是评估怀孕对美国小型马品种母马心电图(ECG)参数和新生小马驹年龄的影响。材料、方法和结果:实验选用10匹美国小型母马,年龄7~19岁(12.14±4.05岁),体重116.85±24.09kg。所有这些母马都是多胎的,产下5.9±3.5胎,最小产2胎,最大产12胎。他们被安置在一个有稻草床的室内马厩里,每天可以进入室外围场几个小时。他们每天喂两次干草。矿物补充剂和水是随意提供的。对10头妊娠母马和10头新生儿进行心电图检查。所有女性在每个妊娠期的代表性时间,即分娩前30、210、300天和分娩后21天进行检查。新生儿在不同的时间接受检查:产后24小时,每周7、14、21、28和35天。所考虑的心电图参数是心率和节律、心电图波的持续时间和间隔(P、PR、QRS、QT、T)以及振幅(P、R、S、T)。平均妊娠期为319.4±4.97天。怀孕期间心率(HR)在51至59 bpm之间变化,分娩后第21天为56 bpm。比较妊娠母马、未妊娠母马和小马驹的临床参数,发现HR、呼吸率(RR)和温度存在差异(P=0.001)。妊娠母马的所有心电图参数均显示出显著差异(P=0.0001),但P1、P2和R波的振幅在三组中相似。与怀孕和未怀孕的母马相比,小马驹的HR和阳性T波振幅的平均值更高,而这两者又没有差异。母马的P波、PR波、QRS波、QT波和T波的平均持续时间相同,但母马的持续时间大于母马。妊娠母马和未妊娠母马相比,QTc片段的持续时间、S波和负T波的振幅仅在3个参数上存在差异。未怀孕母马的QTc段持续时间较长,负T波振幅较大,而小马驹的S波振幅较大。讨论:尽管这项研究没有测量分娩时的HR,但值得考虑分娩时副交感自主神经系统的作用,这会降低母马的HR。这是因为在分娩时,应避免交感神经-肾上腺的激活,因为交感神经张力的增加可通过B2受体引起子宫收缩乏力。因此,研究表明,在生理出生过程中,马处于副交感神经的控制之下,应激反应机制没有被激活。结论是,在生殖状态的演变过程中,波形、间期和心电图复合体的形态计量学,心电图方面通常与心率(PR和QT间期)有关。至于新生儿,与成年女性相比,无论生殖状况如何,大多数心电图参数都存在差异,这表明心电图模式不仅对品种,而且对年龄组的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocardiographic Aspects of Singleton Pregnancy and Neonatal Period in American Miniature Horse Breed
Background: During pregnancy, cardiovascular adaptations occur in order to meet maternal demands and adequate support for fetal development, but they are still unclear in the equine species, especially in the American Miniature horse breed. The main hemodynamic changes that occur during pregnancy are increased heart rate, cardiac output, and blood volume. It is necessary to use the reference values for the miniature breeds, in addition to the age range and reproductive condition, so the objective of this study was to evaluate the effect of pregnancy on electrocardiographic (ECG) parameters in mares and also of age in newborns foals of American Miniature horse breed. Materials, Methods & Results: Ten American Miniature Horse mares, between 7 and 19 years old (12.14 ± 4.05 years), 116.85 ± 24.09 kg of body weight were used in the experiment. All these mares were pluriparous, with 5.9 ± 3.5 of births, minimum of 2, and maximum of 12 foaling times. They were maintained in common social group in an indoor house stable with straw bed, with access to an outdoor paddock for several h per day. Twice a day they were fed with hay. Mineral supplements and water were available ad libitum. The ECG were obtained in 10 pregnant mares and in 10 neonates. All females were examined at a representative time of each trimester of pregnancy, at 30, 210, 300 days before and 21 days after delivery. Neonates were examined on different times: first 24 h after delivery, weekly on the 7th, 14th, 21st, 28th and 35th days of age. The ECG parameters considered were the heart rate and rhythm, duration and intervals (P, PR, QRS, QT, T) and amplitude (P, R, S, T) of ECG waves. The mean of pregnancy duration was 319.4 ± 4.97 days. Heart Rate (HR) varied between 51 to 59 bpm during pregnancy and 56 bpm on the 21st day after delivery. Comparing the clinical parameters of pregnant mares, non-pregnant mares and foal a difference was found for HR, Respiration Rate (RR) and Temperature (P = 0.001). All ECG parameters of pregnant, non-pregnant and foal mares showed a significant difference (P = 0.0001), except for the amplitude of the P1, P2 and R waves, which was similar for the 3 groups. The mean values of HR and amplitude of the positive T wave were higher in foals when compared to pregnant and non-pregnant mares, which in turn did not differ from each other. The mean duration of the P wave, PR segment, QRS complex, QT segment and T wave were the same among mares and greater than in foals. Comparing pregnant and non-pregnant mares, there was a difference in only 3 parameters: duration of the QTc segment, amplitude of the S wave and negative T wave. The non-pregnant mares had a longer duration of the QTc segment and a greater amplitude of the negative T wave, while the foals had a greater amplitude of the S wave. Discussion: Although this study did not measure HR at delivery time, it is worth to consider the action of the parasympathetic autonomic nervous system close to delivery, which reduces the HR of mares. This is because at delivery, sympathetic-adrenal activation should be avoided since the increase in sympathetic tone can cause uterine atony via B2 receptors. For this reason, it has been shown that, during physiological birth, horses are under parasympathetic control, and stress response mechanisms are not activated. It was conclude that the morphometry of the waves, intervals and ECG complexes, during the evolution of the reproductive state, the electrocardiographic aspects were generally associated with heart rate (PR and QT intervals). As for neonates, there was a discrepancy among the most of ECG parameters when compared to the adult female, regardless of reproductive status, clarifying the importance of ECG patterns not only for the breed, but also for the age group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Scientiae Veterinariae
Acta Scientiae Veterinariae VETERINARY SCIENCES-
CiteScore
0.40
自引率
0.00%
发文量
75
审稿时长
6-12 weeks
期刊介绍: ASV is concerned with papers dealing with all aspects of disease prevention, clinical and internal medicine, pathology, surgery, epidemiology, immunology, diagnostic and therapeutic procedures, in addition to fundamental research in physiology, biochemistry, immunochemistry, genetics, cell and molecular biology applied to the veterinary field and as an interface with public health. The submission of a manuscript implies that the same work has not been published and is not under consideration for publication elsewhere. The manuscripts should be first submitted online to the Editor. There are no page charges, only a submission fee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信