Max Ehre, Rafael Flock, M. Fußeder, I. Papaioannou, D. Štraub
{"title":"交叉熵法贝叶斯更新的认证降维","authors":"Max Ehre, Rafael Flock, M. Fußeder, I. Papaioannou, D. Štraub","doi":"10.1137/22m1484031","DOIUrl":null,"url":null,"abstract":"In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Certified Dimension Reduction for Bayesian Updating with the Cross-Entropy Method\",\"authors\":\"Max Ehre, Rafael Flock, M. Fußeder, I. Papaioannou, D. Štraub\",\"doi\":\"10.1137/22m1484031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1484031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1484031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Certified Dimension Reduction for Bayesian Updating with the Cross-Entropy Method
In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.