具有对数超耗散的非齐次Navier-Stokes方程的全局适定性和指数衰减

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Dehua Wang, Z. Ye
{"title":"具有对数超耗散的非齐次Navier-Stokes方程的全局适定性和指数衰减","authors":"Dehua Wang, Z. Ye","doi":"10.1090/qam/1644","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the inhomogeneous incompressible logarithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness of the global strong solution with vacuum over the whole space \n\n \n \n \n R\n \n \n n\n \n \n \\mathbb {R}^{n}\n \n\n. Moreover, we also obtain the exponential decay-in-time of the strong solution. Our result holds without any smallness on the initial data and the initial density is allowed to have vacuum.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness and exponential decay for the inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation\",\"authors\":\"Dehua Wang, Z. Ye\",\"doi\":\"10.1090/qam/1644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for the inhomogeneous incompressible logarithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness of the global strong solution with vacuum over the whole space \\n\\n \\n \\n \\n R\\n \\n \\n n\\n \\n \\n \\\\mathbb {R}^{n}\\n \\n\\n. Moreover, we also obtain the exponential decay-in-time of the strong solution. Our result holds without any smallness on the initial data and the initial density is allowed to have vacuum.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1644\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1644","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了高维非齐次不可压缩对数超耗散Navier-Stokes方程的Cauchy问题。利用Littlewood-Paley技术和新思想,建立了在整个空间R n \mathbb {R}^{n}上具有真空的全局强解的存在唯一性。此外,我们还得到了强解的指数时间衰减。我们的结果在初始数据上没有任何小,并且允许初始密度有真空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness and exponential decay for the inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
We consider the Cauchy problem for the inhomogeneous incompressible logarithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness of the global strong solution with vacuum over the whole space R n \mathbb {R}^{n} . Moreover, we also obtain the exponential decay-in-time of the strong solution. Our result holds without any smallness on the initial data and the initial density is allowed to have vacuum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信