关于粗糙几何中熵的概念

Q3 Mathematics
N. Zava
{"title":"关于粗糙几何中熵的概念","authors":"N. Zava","doi":"10.1515/taa-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract The notion of entropy appears in many branches of mathematics. In each setting (e.g., probability spaces, sets, topological spaces) entropy is a non-negative real-valued function measuring the randomness and disorder that a self-morphism creates. In this paper we propose a notion of entropy, called coarse entropy, in coarse geometry, which is the study of large-scale properties of spaces. Coarse entropy is defined on every bornologous self-map of a locally finite quasi-coarse space (a recent generalisation of the notion of coarse space, introduced by Roe). In this paper we describe this new concept, providing basic properties, examples and comparisons with other entropies, in particular with the algebraic entropy of endomorphisms of monoids.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"7 1","pages":"48 - 68"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2019-0005","citationCount":"6","resultStr":"{\"title\":\"On a notion of entropy in coarse geometry\",\"authors\":\"N. Zava\",\"doi\":\"10.1515/taa-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The notion of entropy appears in many branches of mathematics. In each setting (e.g., probability spaces, sets, topological spaces) entropy is a non-negative real-valued function measuring the randomness and disorder that a self-morphism creates. In this paper we propose a notion of entropy, called coarse entropy, in coarse geometry, which is the study of large-scale properties of spaces. Coarse entropy is defined on every bornologous self-map of a locally finite quasi-coarse space (a recent generalisation of the notion of coarse space, introduced by Roe). In this paper we describe this new concept, providing basic properties, examples and comparisons with other entropies, in particular with the algebraic entropy of endomorphisms of monoids.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"7 1\",\"pages\":\"48 - 68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2019-0005\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

熵的概念出现在数学的许多分支中。在每个设置中(例如,概率空间,集合,拓扑空间),熵是一个非负实值函数,测量自态射产生的随机性和无序性。在本文中,我们提出了一个熵的概念,称为粗熵,在粗几何,这是研究空间的大尺度性质。粗糙熵定义在一个局部有限的拟粗糙空间(粗糙空间概念的最新推广,由Roe引入)的每一个同源自映射上。本文描述了这个新概念,给出了基本性质、例子以及与其他熵的比较,特别是与单群自同态的代数熵的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a notion of entropy in coarse geometry
Abstract The notion of entropy appears in many branches of mathematics. In each setting (e.g., probability spaces, sets, topological spaces) entropy is a non-negative real-valued function measuring the randomness and disorder that a self-morphism creates. In this paper we propose a notion of entropy, called coarse entropy, in coarse geometry, which is the study of large-scale properties of spaces. Coarse entropy is defined on every bornologous self-map of a locally finite quasi-coarse space (a recent generalisation of the notion of coarse space, introduced by Roe). In this paper we describe this new concept, providing basic properties, examples and comparisons with other entropies, in particular with the algebraic entropy of endomorphisms of monoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信