历史加密手稿的自动转录

Q4 Mathematics
Eugen Antal, Pavol Marák
{"title":"历史加密手稿的自动转录","authors":"Eugen Antal, Pavol Marák","doi":"10.2478/tmmp-2022-0019","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with historical encrypted manuscripts and introduces an automated method for the detection and transcription of ciphertext symbols for subsequent cryptanalysis. Our database contains documents used in the past by aristocratic families living in the territory of Slovakia. They are encrypted using a nomenclator which is a specific type of substitution cipher. In our case, the nomenclator uses digits as ciphertext symbols. We have proposed a method for the detection, classification, and transcription of handwritten digits from the original documents. Our method is based on Mask R-CNN which is a deep convolutional neural network for instance segmentation. Mask R-CNN was trained on a manually collected database of digit annotations. We employ a specific strategy where the input image is first divided into small blocks. The image blocks are then passed to Mask R-CNN to obtain detections. This way we avoid problems related to the detection of a large number of small dense objects in a high-resolution image. Experiments have shown promising detection performance for all digit types with minimum false detections.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"82 1","pages":"65 - 86"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated Transcription of Historical Encrypted Manuscripts\",\"authors\":\"Eugen Antal, Pavol Marák\",\"doi\":\"10.2478/tmmp-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with historical encrypted manuscripts and introduces an automated method for the detection and transcription of ciphertext symbols for subsequent cryptanalysis. Our database contains documents used in the past by aristocratic families living in the territory of Slovakia. They are encrypted using a nomenclator which is a specific type of substitution cipher. In our case, the nomenclator uses digits as ciphertext symbols. We have proposed a method for the detection, classification, and transcription of handwritten digits from the original documents. Our method is based on Mask R-CNN which is a deep convolutional neural network for instance segmentation. Mask R-CNN was trained on a manually collected database of digit annotations. We employ a specific strategy where the input image is first divided into small blocks. The image blocks are then passed to Mask R-CNN to obtain detections. This way we avoid problems related to the detection of a large number of small dense objects in a high-resolution image. Experiments have shown promising detection performance for all digit types with minimum false detections.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"82 1\",\"pages\":\"65 - 86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了历史上的加密手稿,并介绍了一种自动检测和转录密文符号的方法,用于后续的密码分析。我们的数据库包含过去居住在斯洛伐克境内的贵族家庭使用的文件。它们使用命名器加密,命名器是一种特定类型的替换密码。在本例中,命名器使用数字作为密文符号。我们提出了一种从原始文档中检测、分类和转录手写数字的方法。我们的方法是基于Mask R-CNN,这是一种用于实例分割的深度卷积神经网络。Mask R-CNN在人工收集的数字注释数据库上进行训练。我们采用了一种特殊的策略,首先将输入图像分成小块。然后将图像块传递给Mask R-CNN以获得检测。这样我们就避免了在高分辨率图像中检测大量小而密集物体的问题。实验表明,该方法对所有数字类型的检测都具有良好的性能,并且检测错误最少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Transcription of Historical Encrypted Manuscripts
Abstract This paper deals with historical encrypted manuscripts and introduces an automated method for the detection and transcription of ciphertext symbols for subsequent cryptanalysis. Our database contains documents used in the past by aristocratic families living in the territory of Slovakia. They are encrypted using a nomenclator which is a specific type of substitution cipher. In our case, the nomenclator uses digits as ciphertext symbols. We have proposed a method for the detection, classification, and transcription of handwritten digits from the original documents. Our method is based on Mask R-CNN which is a deep convolutional neural network for instance segmentation. Mask R-CNN was trained on a manually collected database of digit annotations. We employ a specific strategy where the input image is first divided into small blocks. The image blocks are then passed to Mask R-CNN to obtain detections. This way we avoid problems related to the detection of a large number of small dense objects in a high-resolution image. Experiments have shown promising detection performance for all digit types with minimum false detections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信