串级反馈线性控制系统的几何特性

IF 0.6 4区 数学 Q3 MATHEMATICS
Taylor J. Klotz
{"title":"串级反馈线性控制系统的几何特性","authors":"Taylor J. Klotz","doi":"10.1016/j.difgeo.2023.102044","DOIUrl":null,"url":null,"abstract":"<div><p>Cascade feedback linearization provides geometric insights on explicit integrability of nonlinear control systems with symmetry. A central piece of the theory requires that the partial contact curve reduction of the contact sub-connection be static feedback linearizable. This work establishes new necessary conditions on the equations of Lie type - in the abelian case - that arise in a contact sub-connection with the desired static feedback linearizability property via families of codimension one partial contact curves. Furthermore, an explicit class of contact sub-connections admitting static feedback linearizable contact curve reductions is presented, hinting at a possible classification of all such contact sub-connections. Key tools in proving, and stating, the main results of this paper are truncated versions of the total derivative and Euler operators. Additionally, the Battilotti-Califano system with three inputs is used as a clarifying example of both cascade feedback linearization and the new necessary conditions.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102044"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometry of cascade feedback linearizable control systems\",\"authors\":\"Taylor J. Klotz\",\"doi\":\"10.1016/j.difgeo.2023.102044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cascade feedback linearization provides geometric insights on explicit integrability of nonlinear control systems with symmetry. A central piece of the theory requires that the partial contact curve reduction of the contact sub-connection be static feedback linearizable. This work establishes new necessary conditions on the equations of Lie type - in the abelian case - that arise in a contact sub-connection with the desired static feedback linearizability property via families of codimension one partial contact curves. Furthermore, an explicit class of contact sub-connections admitting static feedback linearizable contact curve reductions is presented, hinting at a possible classification of all such contact sub-connections. Key tools in proving, and stating, the main results of this paper are truncated versions of the total derivative and Euler operators. Additionally, the Battilotti-Califano system with three inputs is used as a clarifying example of both cascade feedback linearization and the new necessary conditions.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"90 \",\"pages\":\"Article 102044\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000700\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000700","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

级联反馈线性化对具有对称性的非线性控制系统的显式可积性提供了几何见解。该理论的一个核心部分要求接触子连接的部分接触曲线减小是静态反馈线性化的。本文通过余维一部分接触曲线族建立了具有期望静态反馈线性化性质的接触子连接的Lie型方程的必要条件。此外,提出了一种允许静态反馈线性化接触曲线缩减的显式接触子连接,暗示了所有此类接触子连接的可能分类。证明和说明本文主要结果的关键工具是全导数和欧拉算子的截断版本。此外,采用三输入的Battilotti-Califano系统作为级联反馈线性化和新必要条件的澄清示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of cascade feedback linearizable control systems

Cascade feedback linearization provides geometric insights on explicit integrability of nonlinear control systems with symmetry. A central piece of the theory requires that the partial contact curve reduction of the contact sub-connection be static feedback linearizable. This work establishes new necessary conditions on the equations of Lie type - in the abelian case - that arise in a contact sub-connection with the desired static feedback linearizability property via families of codimension one partial contact curves. Furthermore, an explicit class of contact sub-connections admitting static feedback linearizable contact curve reductions is presented, hinting at a possible classification of all such contact sub-connections. Key tools in proving, and stating, the main results of this paper are truncated versions of the total derivative and Euler operators. Additionally, the Battilotti-Califano system with three inputs is used as a clarifying example of both cascade feedback linearization and the new necessary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信