扩展指数威布尔分布及其应用

IF 1.6 Q1 STATISTICS & PROBABILITY
E. Mahmoudi, R. Meshkat, Batool Kargar, D. Kundu
{"title":"扩展指数威布尔分布及其应用","authors":"E. Mahmoudi, R. Meshkat, Batool Kargar, D. Kundu","doi":"10.6092/ISSN.1973-2201/7503","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a univariate four-parameter distribution. Several known distributions like exponentiated Weibull or extended generalized exponential distribution can be obtained as special case of this distribution. The new distribution is quite flexible and can be used quite effectively in analysing survival or reliability data. It can have a decreasing, increasing, decreasing-increasing-decreasing (DID), upside-down bathtub (unimodal) and bathtub-shaped failure rate function depending on its parameters. We provide a comprehensive account of the mathematical properties of the new distribution. In particular, we derive expressions for the moments, mean deviations, Renyi and Shannon entropy. We discuss maximum likelihood estimation of the unknown parameters of the new model for censored and complete sample using the profile and modified likelihood functions. One empirical application of the new model to real data are presented for illustrative purposes.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"78 1","pages":"363-396"},"PeriodicalIF":1.6000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Extended Exponentiated Weibull Distribution and its Applications\",\"authors\":\"E. Mahmoudi, R. Meshkat, Batool Kargar, D. Kundu\",\"doi\":\"10.6092/ISSN.1973-2201/7503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a univariate four-parameter distribution. Several known distributions like exponentiated Weibull or extended generalized exponential distribution can be obtained as special case of this distribution. The new distribution is quite flexible and can be used quite effectively in analysing survival or reliability data. It can have a decreasing, increasing, decreasing-increasing-decreasing (DID), upside-down bathtub (unimodal) and bathtub-shaped failure rate function depending on its parameters. We provide a comprehensive account of the mathematical properties of the new distribution. In particular, we derive expressions for the moments, mean deviations, Renyi and Shannon entropy. We discuss maximum likelihood estimation of the unknown parameters of the new model for censored and complete sample using the profile and modified likelihood functions. One empirical application of the new model to real data are presented for illustrative purposes.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"78 1\",\"pages\":\"363-396\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/7503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/7503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文引入了一种单变量四参数分布。作为这种分布的特殊情况,可以得到一些已知的分布,如指数威布尔分布或扩展广义指数分布。新的分布非常灵活,可以非常有效地用于分析生存或可靠性数据。根据其参数的不同,可具有减小、增大、减小-增大-减小(DID)、倒浴盆(单峰)和浴盆形故障率函数。我们对新分布的数学性质作了全面的说明。特别是,我们推导了矩、平均偏差、Renyi和Shannon熵的表达式。我们讨论了用轮廓函数和修正似然函数对截尾样本和完全样本的新模型的未知参数的最大似然估计。为了说明目的,提出了新模型在实际数据中的一个经验应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Extended Exponentiated Weibull Distribution and its Applications
In this paper, we introduce a univariate four-parameter distribution. Several known distributions like exponentiated Weibull or extended generalized exponential distribution can be obtained as special case of this distribution. The new distribution is quite flexible and can be used quite effectively in analysing survival or reliability data. It can have a decreasing, increasing, decreasing-increasing-decreasing (DID), upside-down bathtub (unimodal) and bathtub-shaped failure rate function depending on its parameters. We provide a comprehensive account of the mathematical properties of the new distribution. In particular, we derive expressions for the moments, mean deviations, Renyi and Shannon entropy. We discuss maximum likelihood estimation of the unknown parameters of the new model for censored and complete sample using the profile and modified likelihood functions. One empirical application of the new model to real data are presented for illustrative purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信