黎曼流形上的微局部解耦不等式与距离问题

IF 1.7 1区 数学 Q1 MATHEMATICS
A. Iosevich, Bochen Liu, Yakun Xi
{"title":"黎曼流形上的微局部解耦不等式与距离问题","authors":"A. Iosevich, Bochen Liu, Yakun Xi","doi":"10.1353/ajm.2022.0039","DOIUrl":null,"url":null,"abstract":"abstract:We study the generalization of the Falconer distance problem to the Riemannian setting. In particular, we extend the result of Guth--Iosevich--Ou--Wang for the distance set in the plane to general Riemannian surfaces. Key new ingredients include a family of refined microlocal decoupling inequalities, which are related to the work of Beltran--Hickman--Sogge on Wolff-type inequalities, and an analog of Orponen's radial projection lemma which has proved quite useful in recent work on distance sets.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"144 1","pages":"1601 - 1639"},"PeriodicalIF":1.7000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Microlocal decoupling inequalities and the distance problem on Riemannian manifolds\",\"authors\":\"A. Iosevich, Bochen Liu, Yakun Xi\",\"doi\":\"10.1353/ajm.2022.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:We study the generalization of the Falconer distance problem to the Riemannian setting. In particular, we extend the result of Guth--Iosevich--Ou--Wang for the distance set in the plane to general Riemannian surfaces. Key new ingredients include a family of refined microlocal decoupling inequalities, which are related to the work of Beltran--Hickman--Sogge on Wolff-type inequalities, and an analog of Orponen's radial projection lemma which has proved quite useful in recent work on distance sets.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"144 1\",\"pages\":\"1601 - 1639\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2022.0039\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2022.0039","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

研究了Falconer距离问题在黎曼情况下的推广。特别地,我们将Guth—Iosevich—Ou—Wang关于平面上距离集的结果推广到一般黎曼曲面。关键的新成分包括一系列精细的微局部解耦不等式,这与Beltran- Hickman- Sogge关于wolff型不等式的工作有关,以及Orponen的径向投影引理的模拟,该引理在最近关于距离集的工作中被证明非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microlocal decoupling inequalities and the distance problem on Riemannian manifolds
abstract:We study the generalization of the Falconer distance problem to the Riemannian setting. In particular, we extend the result of Guth--Iosevich--Ou--Wang for the distance set in the plane to general Riemannian surfaces. Key new ingredients include a family of refined microlocal decoupling inequalities, which are related to the work of Beltran--Hickman--Sogge on Wolff-type inequalities, and an analog of Orponen's radial projection lemma which has proved quite useful in recent work on distance sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信