G. Chatzarakis, A. George Maria Selvam, R. Janagaraj, G. Miliaras
{"title":"一类离散非线性分数阶导数解的振动性","authors":"G. Chatzarakis, A. George Maria Selvam, R. Janagaraj, G. Miliaras","doi":"10.2478/tmmp-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ, \\[\\Delta [\\gamma (\\ell ){[\\alpha (\\ell ) + \\beta (\\ell ){\\Delta ^\\mu }u(\\ell )]^\\eta }] + \\phi (\\ell )f[G(\\ell )] = 0,\\ell \\in {N_{{\\ell _0} + 1 - \\mu }},\\] where ℓ0>0, G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\\[{\\ell _0} > 0,\\quad G(\\ell ) = \\sum\\limits_{j = {\\ell _0}}^{\\ell - 1 + \\mu } {{{(\\ell - j - 1)}^{( - \\mu )}}u(j)} \\] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"101 - 118"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation Behaviour of Solutions for a Class of a Discrete Nonlinear Fractional-Order Derivatives\",\"authors\":\"G. Chatzarakis, A. George Maria Selvam, R. Janagaraj, G. Miliaras\",\"doi\":\"10.2478/tmmp-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ, \\\\[\\\\Delta [\\\\gamma (\\\\ell ){[\\\\alpha (\\\\ell ) + \\\\beta (\\\\ell ){\\\\Delta ^\\\\mu }u(\\\\ell )]^\\\\eta }] + \\\\phi (\\\\ell )f[G(\\\\ell )] = 0,\\\\ell \\\\in {N_{{\\\\ell _0} + 1 - \\\\mu }},\\\\] where ℓ0>0, G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\\\\[{\\\\ell _0} > 0,\\\\quad G(\\\\ell ) = \\\\sum\\\\limits_{j = {\\\\ell _0}}^{\\\\ell - 1 + \\\\mu } {{{(\\\\ell - j - 1)}^{( - \\\\mu )}}u(j)} \\\\] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"79 1\",\"pages\":\"101 - 118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Oscillation Behaviour of Solutions for a Class of a Discrete Nonlinear Fractional-Order Derivatives
Abstract Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ, \[\Delta [\gamma (\ell ){[\alpha (\ell ) + \beta (\ell ){\Delta ^\mu }u(\ell )]^\eta }] + \phi (\ell )f[G(\ell )] = 0,\ell \in {N_{{\ell _0} + 1 - \mu }},\] where ℓ0>0, G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\[{\ell _0} > 0,\quad G(\ell ) = \sum\limits_{j = {\ell _0}}^{\ell - 1 + \mu } {{{(\ell - j - 1)}^{( - \mu )}}u(j)} \] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.