Phung Thi Bich Hoa, Nguyen Hoang Tue, L. Huyen, Luc Hoang Linh, N. Nhan, Nguyen-Quang-Duc Tien, N. Luong, Nguyen-Xuan Huy, N. Loc
{"title":"粗糙木霉SH16 42 kDa几丁质酶基因在花生中的过表达","authors":"Phung Thi Bich Hoa, Nguyen Hoang Tue, L. Huyen, Luc Hoang Linh, N. Nhan, Nguyen-Quang-Duc Tien, N. Luong, Nguyen-Xuan Huy, N. Loc","doi":"10.1080/15427528.2022.2110346","DOIUrl":null,"url":null,"abstract":"ABSTRACT In tropical and subtropical areas, peanuts are a very important legume crop that is widely cultivated for food and cooking oil. They are, however, extremely susceptible to a wide range of phytopathogens, particularly soil-borne fungi, which result in low yields and poor seed quality. This study aimed to express three Trichoderma asperellum SH16 42 kDa chitinase-encoding genes in peanut to improve their resistance to some soil-borne fungi. Chi42 is a synthetic, intronless, wild-type gene, whereas syncodChi42-1 and syncodChi42-2 are peanut codon-optimized synthetic genes. These genes were introduced into a local peanut strain through Agrobacterium-mediated transformation. Analysis of the transgenic peanut lines showed that chitinase-specific activities from the syncodChi42-1 and syncodChi42-2 genes were approximately 1.2 and 1.4 times higher than those of the wild-type gene, respectively. The engineered peanut plants also exhibited antifungal activity against the soil-borne pathogenic fungus Sclerotium rolfsii. The transgenic peanut lines transformed with the two synthetic genes have stronger antifungal activities than those transformed with the wild-type version, suggesting that they could be used as novel peanut lines to combat phytopathogenic fungi.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"37 1","pages":"463 - 478"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overexpression of 42 kDa chitinase genes from Trichoderma asperellum SH16 in peanut (Arachis hypogaea)\",\"authors\":\"Phung Thi Bich Hoa, Nguyen Hoang Tue, L. Huyen, Luc Hoang Linh, N. Nhan, Nguyen-Quang-Duc Tien, N. Luong, Nguyen-Xuan Huy, N. Loc\",\"doi\":\"10.1080/15427528.2022.2110346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In tropical and subtropical areas, peanuts are a very important legume crop that is widely cultivated for food and cooking oil. They are, however, extremely susceptible to a wide range of phytopathogens, particularly soil-borne fungi, which result in low yields and poor seed quality. This study aimed to express three Trichoderma asperellum SH16 42 kDa chitinase-encoding genes in peanut to improve their resistance to some soil-borne fungi. Chi42 is a synthetic, intronless, wild-type gene, whereas syncodChi42-1 and syncodChi42-2 are peanut codon-optimized synthetic genes. These genes were introduced into a local peanut strain through Agrobacterium-mediated transformation. Analysis of the transgenic peanut lines showed that chitinase-specific activities from the syncodChi42-1 and syncodChi42-2 genes were approximately 1.2 and 1.4 times higher than those of the wild-type gene, respectively. The engineered peanut plants also exhibited antifungal activity against the soil-borne pathogenic fungus Sclerotium rolfsii. The transgenic peanut lines transformed with the two synthetic genes have stronger antifungal activities than those transformed with the wild-type version, suggesting that they could be used as novel peanut lines to combat phytopathogenic fungi.\",\"PeriodicalId\":15468,\"journal\":{\"name\":\"Journal of Crop Improvement\",\"volume\":\"37 1\",\"pages\":\"463 - 478\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crop Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427528.2022.2110346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2022.2110346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Overexpression of 42 kDa chitinase genes from Trichoderma asperellum SH16 in peanut (Arachis hypogaea)
ABSTRACT In tropical and subtropical areas, peanuts are a very important legume crop that is widely cultivated for food and cooking oil. They are, however, extremely susceptible to a wide range of phytopathogens, particularly soil-borne fungi, which result in low yields and poor seed quality. This study aimed to express three Trichoderma asperellum SH16 42 kDa chitinase-encoding genes in peanut to improve their resistance to some soil-borne fungi. Chi42 is a synthetic, intronless, wild-type gene, whereas syncodChi42-1 and syncodChi42-2 are peanut codon-optimized synthetic genes. These genes were introduced into a local peanut strain through Agrobacterium-mediated transformation. Analysis of the transgenic peanut lines showed that chitinase-specific activities from the syncodChi42-1 and syncodChi42-2 genes were approximately 1.2 and 1.4 times higher than those of the wild-type gene, respectively. The engineered peanut plants also exhibited antifungal activity against the soil-borne pathogenic fungus Sclerotium rolfsii. The transgenic peanut lines transformed with the two synthetic genes have stronger antifungal activities than those transformed with the wild-type version, suggesting that they could be used as novel peanut lines to combat phytopathogenic fungi.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.