{"title":"从R4到R2映射的孤立临界点和经典光纤链路的Milnor数的自然分裂,第二部分","authors":"L. Rudolph","doi":"10.1201/9781003072386-20","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Isolated Critical Points of Maps from R4 to R2 and a Natural Splitting of the Milnor Number of a Classical Fibred Link, Part II\",\"authors\":\"L. Rudolph\",\"doi\":\"10.1201/9781003072386-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781003072386-20\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003072386-20","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.