复杂指定信息的统一模型

George D. Montañez
{"title":"复杂指定信息的统一模型","authors":"George D. Montañez","doi":"10.5048/BIO-C.2018.4","DOIUrl":null,"url":null,"abstract":"A mathematical theory of complex specified information is introduced which unifies several prior methods of computing specified complexity. Similar to how the exponential family of probability distributions have dissimilar surface forms yet share a common underlying mathematical identity, we define a model that allows us to cast Dembski’s semiotic specified complexity, Ewert et al.’s algorithmic specified complexity, Hazen et al.’s functional information, and Behe’s irreducible complexity into a common mathematical form. Adding additional constraints, we introduce canonical specified complexity models, for which one-sided conservation bounds are given, showing that large specified complexity values are unlikely under any given continuous or discrete distribution and that canonical models can be used to form statistical hypothesis tests, by bounding tail probabilities for arbitrary distributions.","PeriodicalId":89660,"journal":{"name":"BIO-complexity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Unified Model of Complex Specified Information\",\"authors\":\"George D. Montañez\",\"doi\":\"10.5048/BIO-C.2018.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical theory of complex specified information is introduced which unifies several prior methods of computing specified complexity. Similar to how the exponential family of probability distributions have dissimilar surface forms yet share a common underlying mathematical identity, we define a model that allows us to cast Dembski’s semiotic specified complexity, Ewert et al.’s algorithmic specified complexity, Hazen et al.’s functional information, and Behe’s irreducible complexity into a common mathematical form. Adding additional constraints, we introduce canonical specified complexity models, for which one-sided conservation bounds are given, showing that large specified complexity values are unlikely under any given continuous or discrete distribution and that canonical models can be used to form statistical hypothesis tests, by bounding tail probabilities for arbitrary distributions.\",\"PeriodicalId\":89660,\"journal\":{\"name\":\"BIO-complexity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIO-complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5048/BIO-C.2018.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO-complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5048/BIO-C.2018.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

介绍了一种复杂指定信息的数学理论,该理论统一了现有的几种计算指定复杂度的方法。类似于概率分布的指数族如何具有不同的表面形式,但共享一个共同的基本数学恒等式,我们定义了一个模型,使我们能够将Dembski的符号指定复杂性、Ewert等人的算法指定复杂性、Hazen等人的函数信息和Behe的不可约复杂性转换为一个常见的数学形式。在添加额外约束的情况下,我们引入了规范指定复杂度模型,该模型给出了单侧守恒界,表明在任何给定的连续或离散分布下,大的指定复杂度值都是不可能的,并且规范模型可以用于通过对任意分布的尾概率进行定界来形成统计假设检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Model of Complex Specified Information
A mathematical theory of complex specified information is introduced which unifies several prior methods of computing specified complexity. Similar to how the exponential family of probability distributions have dissimilar surface forms yet share a common underlying mathematical identity, we define a model that allows us to cast Dembski’s semiotic specified complexity, Ewert et al.’s algorithmic specified complexity, Hazen et al.’s functional information, and Behe’s irreducible complexity into a common mathematical form. Adding additional constraints, we introduce canonical specified complexity models, for which one-sided conservation bounds are given, showing that large specified complexity values are unlikely under any given continuous or discrete distribution and that canonical models can be used to form statistical hypothesis tests, by bounding tail probabilities for arbitrary distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信