C. Quiloango-Chimarro, R. D. Coelho, J. Costa, Rafael Gomez-Arrieta
{"title":"预测普通大豆产量损失的作物水分胁迫指数","authors":"C. Quiloango-Chimarro, R. D. Coelho, J. Costa, Rafael Gomez-Arrieta","doi":"10.15809/irriga.2021v1n4p687-695","DOIUrl":null,"url":null,"abstract":"The crop water stress index (CWSI), an index derived from canopy temperature, has been widely studied as a physiological indicator of plant water status to optimize irrigation in common beans. However, it is not clear how this index could contribute to yield prediction as a decision support tool in irrigation management. This paper aimed to use the CWSI for predicting yield loss in common bean (Phaseolus vulgaris L.) subjected to water stress under drip irrigation. A rain shelter experiment was conducted using a completely randomized design with five replications. The indeterminate growth cultivar TAA Dama was subjected to three irrigation treatments: 100% of the field capacity (FC), 75 and 50% FC from 20 days after sowing (DAS) until the end of the crop cycle. Grain yield was reduced by 42% under 50% FC treatment. Furthermore, stomatal conductance was reduced under this treatment, whereas the CWSI and canopy temperature increased as irrigation levels decreased. The relationship between grain yield and CWSI (R2=0.76, RSME=2.35g) suggests that canopy temperature data could be used to forecast grain yield losses. In conclusion, farmers can have a low-cost, effective technique for making water management decisions in common bean.","PeriodicalId":14625,"journal":{"name":"IRRIGA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CROP WATER STRESS INDEX FOR PREDICTING YIELD LOSS IN COMMON BEAN\",\"authors\":\"C. Quiloango-Chimarro, R. D. Coelho, J. Costa, Rafael Gomez-Arrieta\",\"doi\":\"10.15809/irriga.2021v1n4p687-695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crop water stress index (CWSI), an index derived from canopy temperature, has been widely studied as a physiological indicator of plant water status to optimize irrigation in common beans. However, it is not clear how this index could contribute to yield prediction as a decision support tool in irrigation management. This paper aimed to use the CWSI for predicting yield loss in common bean (Phaseolus vulgaris L.) subjected to water stress under drip irrigation. A rain shelter experiment was conducted using a completely randomized design with five replications. The indeterminate growth cultivar TAA Dama was subjected to three irrigation treatments: 100% of the field capacity (FC), 75 and 50% FC from 20 days after sowing (DAS) until the end of the crop cycle. Grain yield was reduced by 42% under 50% FC treatment. Furthermore, stomatal conductance was reduced under this treatment, whereas the CWSI and canopy temperature increased as irrigation levels decreased. The relationship between grain yield and CWSI (R2=0.76, RSME=2.35g) suggests that canopy temperature data could be used to forecast grain yield losses. In conclusion, farmers can have a low-cost, effective technique for making water management decisions in common bean.\",\"PeriodicalId\":14625,\"journal\":{\"name\":\"IRRIGA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRRIGA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15809/irriga.2021v1n4p687-695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRRIGA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15809/irriga.2021v1n4p687-695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
CROP WATER STRESS INDEX FOR PREDICTING YIELD LOSS IN COMMON BEAN
The crop water stress index (CWSI), an index derived from canopy temperature, has been widely studied as a physiological indicator of plant water status to optimize irrigation in common beans. However, it is not clear how this index could contribute to yield prediction as a decision support tool in irrigation management. This paper aimed to use the CWSI for predicting yield loss in common bean (Phaseolus vulgaris L.) subjected to water stress under drip irrigation. A rain shelter experiment was conducted using a completely randomized design with five replications. The indeterminate growth cultivar TAA Dama was subjected to three irrigation treatments: 100% of the field capacity (FC), 75 and 50% FC from 20 days after sowing (DAS) until the end of the crop cycle. Grain yield was reduced by 42% under 50% FC treatment. Furthermore, stomatal conductance was reduced under this treatment, whereas the CWSI and canopy temperature increased as irrigation levels decreased. The relationship between grain yield and CWSI (R2=0.76, RSME=2.35g) suggests that canopy temperature data could be used to forecast grain yield losses. In conclusion, farmers can have a low-cost, effective technique for making water management decisions in common bean.
IRRIGAEnvironmental Science-Water Science and Technology
CiteScore
0.70
自引率
0.00%
发文量
6
期刊介绍:
A Revista IRRIGA é destinada a publicar trabalhos originais e que contribuam para o desenvolvimento cientifico da agricultura em português, espanhol, preferivelmente em inglês, nas áreas de Irrigação, Drenagem, Hidrologia, Agrometeorologia, Relações Solo-Água-Planta-Atmosfera e Reuso de Água. IRRIGA is a Scientific Journal edited by Agricultural Science College-UNESP, devoted to the publication of original scientific papers in English or Portuguese or Spanish, within the topics: Irrigation, Drainage, Agrometeorology, Hydrology, Waste Water and Soil-Water-Plant-Atmosphere Relationships.