{"title":"矩阵展开式M = 2I的二维小波及其在求解积分方程中的应用","authors":"M. Tahami, A. A. Hemmat","doi":"10.46793/kgjmat2204.649t","DOIUrl":null,"url":null,"abstract":"In this study, using a one-dimensionl MRA we constructed a two-dimensional wavelet as well as four masks which are not related to the MRA. Finally, we provide some examples to prove the applicability of our construction in case of finding numerical solution of two-dimensional first kind Fredholm integral equations.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Wavelet with Matrix Dilation M = 2I and its Application in Solving Integral Equations\",\"authors\":\"M. Tahami, A. A. Hemmat\",\"doi\":\"10.46793/kgjmat2204.649t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, using a one-dimensionl MRA we constructed a two-dimensional wavelet as well as four masks which are not related to the MRA. Finally, we provide some examples to prove the applicability of our construction in case of finding numerical solution of two-dimensional first kind Fredholm integral equations.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2204.649t\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2204.649t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Two-Dimensional Wavelet with Matrix Dilation M = 2I and its Application in Solving Integral Equations
In this study, using a one-dimensionl MRA we constructed a two-dimensional wavelet as well as four masks which are not related to the MRA. Finally, we provide some examples to prove the applicability of our construction in case of finding numerical solution of two-dimensional first kind Fredholm integral equations.