{"title":"具有最大计算Clifford指数的曲线","authors":"Takaomi Kato, G. Martens","doi":"10.18910/72319","DOIUrl":null,"url":null,"abstract":"We say that a curve X of genus g has maximally computed Clifford index if the Clifford index c of X is, for c > 2, computed by a linear series of the maximum possible degree d < g; then d = 2c + 3 resp. d = 2c + 4 for odd resp. even c. For odd c such curves have been studied in [6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford index c.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"277-288"},"PeriodicalIF":0.5000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CURVES WITH MAXIMALLY COMPUTED CLIFFORD INDEX\",\"authors\":\"Takaomi Kato, G. Martens\",\"doi\":\"10.18910/72319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a curve X of genus g has maximally computed Clifford index if the Clifford index c of X is, for c > 2, computed by a linear series of the maximum possible degree d < g; then d = 2c + 3 resp. d = 2c + 4 for odd resp. even c. For odd c such curves have been studied in [6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford index c.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"277-288\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/72319\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72319","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We say that a curve X of genus g has maximally computed Clifford index if the Clifford index c of X is, for c > 2, computed by a linear series of the maximum possible degree d < g; then d = 2c + 3 resp. d = 2c + 4 for odd resp. even c. For odd c such curves have been studied in [6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford index c.
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.