具有Hardy电位的退化p(x)-双调和算子的最小特征值

IF 0.4 Q4 MATHEMATICS
Adnan Belakhdar, H. Belaouidel, Mohammed Filali, N. Tsouli
{"title":"具有Hardy电位的退化p(x)-双调和算子的最小特征值","authors":"Adnan Belakhdar, H. Belaouidel, Mohammed Filali, N. Tsouli","doi":"10.5269/bspm.62754","DOIUrl":null,"url":null,"abstract":"The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The infimum eigenvalue for degenerate p(x)-biharmonic operator with the Hardy potentiel\",\"authors\":\"Adnan Belakhdar, H. Belaouidel, Mohammed Filali, N. Tsouli\",\"doi\":\"10.5269/bspm.62754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.62754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文基于C1流形上的Ljusternik-Schnirelmann理论和变量理论,利用变分技术研究了一类退化p(·)-双调和算子和q(x)-Hardy不等式的椭圆型Navier边值问题的非负特征值(λk)k≥1的无界不可减序列的存在性指数Lebesgue空间。此外,我们还得到了该问题的下确界特征值的正性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The infimum eigenvalue for degenerate p(x)-biharmonic operator with the Hardy potentiel
The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信