Adnan Belakhdar, H. Belaouidel, Mohammed Filali, N. Tsouli
{"title":"具有Hardy电位的退化p(x)-双调和算子的最小特征值","authors":"Adnan Belakhdar, H. Belaouidel, Mohammed Filali, N. Tsouli","doi":"10.5269/bspm.62754","DOIUrl":null,"url":null,"abstract":"The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The infimum eigenvalue for degenerate p(x)-biharmonic operator with the Hardy potentiel\",\"authors\":\"Adnan Belakhdar, H. Belaouidel, Mohammed Filali, N. Tsouli\",\"doi\":\"10.5269/bspm.62754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.62754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The infimum eigenvalue for degenerate p(x)-biharmonic operator with the Hardy potentiel
The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.