具有阈值收获的产毒捕食者-猎物模型的时空动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luhong Ye, Hongyong Zhao, Daiyong Wu
{"title":"具有阈值收获的产毒捕食者-猎物模型的时空动力学","authors":"Luhong Ye, Hongyong Zhao, Daiyong Wu","doi":"10.15388/namc.2023.28.32845","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a toxin-producing predator–prey model with threshold harvesting and study spatiotemporal dynamics of the model under the homogeneous Neumann boundary conditions. At first, the persistence property of solutions to the system is investigated. Then the explicit requirements for the existence of nonconstant steady state solutions are derived by studying the relevant characteristic equation. These steady states occur from related constant steady states via steady state bifurcation. Throughout the analysis of the amplitude equations of Turing pattern by the multiple scale method, pattern formation can be found. Finally, we display  umericalsimulations to verify the theoretical outcomes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamics in a toxin-producing predator–prey model with threshold harvesting\",\"authors\":\"Luhong Ye, Hongyong Zhao, Daiyong Wu\",\"doi\":\"10.15388/namc.2023.28.32845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a toxin-producing predator–prey model with threshold harvesting and study spatiotemporal dynamics of the model under the homogeneous Neumann boundary conditions. At first, the persistence property of solutions to the system is investigated. Then the explicit requirements for the existence of nonconstant steady state solutions are derived by studying the relevant characteristic equation. These steady states occur from related constant steady states via steady state bifurcation. Throughout the analysis of the amplitude equations of Turing pattern by the multiple scale method, pattern formation can be found. Finally, we display  umericalsimulations to verify the theoretical outcomes.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.32845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有阈值收获的产毒捕食-食饵模型,并研究了该模型在齐次诺伊曼边界条件下的时空动力学特性。首先,研究了系统解的持续性。然后通过对相关特征方程的研究,推导出非常稳态解存在的显式条件。这些稳态是由相关的常稳态通过稳态分岔而产生的。通过多尺度法对图灵图振幅方程的分析,可以发现图灵图的形成。最后,通过数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal dynamics in a toxin-producing predator–prey model with threshold harvesting
In this paper, we propose a toxin-producing predator–prey model with threshold harvesting and study spatiotemporal dynamics of the model under the homogeneous Neumann boundary conditions. At first, the persistence property of solutions to the system is investigated. Then the explicit requirements for the existence of nonconstant steady state solutions are derived by studying the relevant characteristic equation. These steady states occur from related constant steady states via steady state bifurcation. Throughout the analysis of the amplitude equations of Turing pattern by the multiple scale method, pattern formation can be found. Finally, we display  umericalsimulations to verify the theoretical outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信