{"title":"重尾分布的最优指标估计","authors":"D. Politis, V. Vasiliev, S. Vorobeychikov","doi":"10.1080/07474946.2021.1847969","DOIUrl":null,"url":null,"abstract":"Abstract The optimal parameter estimation problem is considered. The optimization problem is solved in the general problem statement. A model-free approach is applied and supposes no knowledge of the model that the parameter to be estimated belongs to. Optimality of the considered estimators in the sense of a special type risk function is established. The considered risk function makes it possible to optimize the asymptotic variances of the estimators and is used for sample size estimation. Applications for optimization of the truncated parameter estimators of heavy-tailed indexes of distributions, such as Pareto type, Cauchy, and log-gamma, are presented. A class of these estimators is introduced having guaranteed accuracy based on a sample of fixed size. Simulation results confirm theoretical results.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"40 1","pages":"125 - 147"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2021.1847969","citationCount":"0","resultStr":"{\"title\":\"Optimal index estimation of heavy-tailed distributions\",\"authors\":\"D. Politis, V. Vasiliev, S. Vorobeychikov\",\"doi\":\"10.1080/07474946.2021.1847969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The optimal parameter estimation problem is considered. The optimization problem is solved in the general problem statement. A model-free approach is applied and supposes no knowledge of the model that the parameter to be estimated belongs to. Optimality of the considered estimators in the sense of a special type risk function is established. The considered risk function makes it possible to optimize the asymptotic variances of the estimators and is used for sample size estimation. Applications for optimization of the truncated parameter estimators of heavy-tailed indexes of distributions, such as Pareto type, Cauchy, and log-gamma, are presented. A class of these estimators is introduced having guaranteed accuracy based on a sample of fixed size. Simulation results confirm theoretical results.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"40 1\",\"pages\":\"125 - 147\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2021.1847969\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2021.1847969\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2021.1847969","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Optimal index estimation of heavy-tailed distributions
Abstract The optimal parameter estimation problem is considered. The optimization problem is solved in the general problem statement. A model-free approach is applied and supposes no knowledge of the model that the parameter to be estimated belongs to. Optimality of the considered estimators in the sense of a special type risk function is established. The considered risk function makes it possible to optimize the asymptotic variances of the estimators and is used for sample size estimation. Applications for optimization of the truncated parameter estimators of heavy-tailed indexes of distributions, such as Pareto type, Cauchy, and log-gamma, are presented. A class of these estimators is introduced having guaranteed accuracy based on a sample of fixed size. Simulation results confirm theoretical results.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.