错定遍历lsamy驱动随机微分方程模型的自举法

Pub Date : 2022-11-10 DOI:10.1007/s10463-022-00854-2
Yuma Uehara
{"title":"错定遍历lsamy驱动随机微分方程模型的自举法","authors":"Yuma Uehara","doi":"10.1007/s10463-022-00854-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider possibly misspecified stochastic differential equation models driven by Lévy processes. Regardless of whether the driving noise is Gaussian or not, Gaussian quasi-likelihood estimator can estimate unknown parameters in the drift and scale coefficients. However, in the misspecified case, the asymptotic distribution of the estimator varies by the correction of the misspecification bias, and consistent estimators for the asymptotic variance proposed in the correctly specified case may lose theoretical validity. As one of its solutions, we propose a bootstrap method for approximating the asymptotic distribution. We show that our bootstrap method theoretically works in both correctly specified case and misspecified case without assuming the precise distribution of the driving noise.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models\",\"authors\":\"Yuma Uehara\",\"doi\":\"10.1007/s10463-022-00854-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider possibly misspecified stochastic differential equation models driven by Lévy processes. Regardless of whether the driving noise is Gaussian or not, Gaussian quasi-likelihood estimator can estimate unknown parameters in the drift and scale coefficients. However, in the misspecified case, the asymptotic distribution of the estimator varies by the correction of the misspecification bias, and consistent estimators for the asymptotic variance proposed in the correctly specified case may lose theoretical validity. As one of its solutions, we propose a bootstrap method for approximating the asymptotic distribution. We show that our bootstrap method theoretically works in both correctly specified case and misspecified case without assuming the precise distribution of the driving noise.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00854-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00854-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了由lsamvy过程驱动的可能的错定随机微分方程模型。无论驱动噪声是否为高斯噪声,高斯拟似然估计都可以估计出漂移系数和尺度系数中的未知参数。然而,在错误指定的情况下,估计量的渐近分布随着错误指定偏差的校正而变化,并且在正确指定的情况下提出的渐近方差的一致估计可能会失去理论有效性。作为其解之一,我们提出了一种逼近渐近分布的自举法。结果表明,在不假设驱动噪声精确分布的情况下,该方法在正确指定情况和错误指定情况下理论上都有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models

In this paper, we consider possibly misspecified stochastic differential equation models driven by Lévy processes. Regardless of whether the driving noise is Gaussian or not, Gaussian quasi-likelihood estimator can estimate unknown parameters in the drift and scale coefficients. However, in the misspecified case, the asymptotic distribution of the estimator varies by the correction of the misspecification bias, and consistent estimators for the asymptotic variance proposed in the correctly specified case may lose theoretical validity. As one of its solutions, we propose a bootstrap method for approximating the asymptotic distribution. We show that our bootstrap method theoretically works in both correctly specified case and misspecified case without assuming the precise distribution of the driving noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信