用人工神经网络计算喀麦隆北部重力数据的深度和线形图

IF 1 Q3 GEOCHEMISTRY & GEOPHYSICS
Marcelin Mouzong Pemi, J. Kamguia, S. Nguiya, E. Manguelle-Dicoum
{"title":"用人工神经网络计算喀麦隆北部重力数据的深度和线形图","authors":"Marcelin Mouzong Pemi, J. Kamguia, S. Nguiya, E. Manguelle-Dicoum","doi":"10.1155/2018/1298087","DOIUrl":null,"url":null,"abstract":"Accurate interpretation of geological structures inverted from gravity data is highly dependent on the coverage of the recorded gravity data. In this work, Artificial Neural Networks (ANNs) are implemented using Levenberg-Marquardt algorithm (LMA) to construct a background density model for predicting gravity data across Northern Cameroon and its surroundings. This approach yields statistical predictions of gravity values (low values of errors) with 97.48%, 0.10, and 0.89, respectively, for correlation, Mean Bias Error, and Root Mean Square Error for two inputs (latitude, longitude) and 97.08%, 0.13, and 1.14 for three inputs (latitude, longitude, and elevation) for a set of anomalies as output. The model validation is obtained by comparing the results to other classical approaches and to the computed Bouguer, lineaments, and Euler maps obtained from measured gravity data. The depth of most of the deep faults and their orientation are in agreement with those obtained from other studies. The results achieved in this study establish the possibility of enhancing the quality of the analysis, interpretation, and modeling of gravity data collected on sparse grid of recording stations.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1298087","citationCount":"7","resultStr":"{\"title\":\"Depth and Lineament Maps Derived from North Cameroon Gravity Data Computed by Artificial Neural Network\",\"authors\":\"Marcelin Mouzong Pemi, J. Kamguia, S. Nguiya, E. Manguelle-Dicoum\",\"doi\":\"10.1155/2018/1298087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate interpretation of geological structures inverted from gravity data is highly dependent on the coverage of the recorded gravity data. In this work, Artificial Neural Networks (ANNs) are implemented using Levenberg-Marquardt algorithm (LMA) to construct a background density model for predicting gravity data across Northern Cameroon and its surroundings. This approach yields statistical predictions of gravity values (low values of errors) with 97.48%, 0.10, and 0.89, respectively, for correlation, Mean Bias Error, and Root Mean Square Error for two inputs (latitude, longitude) and 97.08%, 0.13, and 1.14 for three inputs (latitude, longitude, and elevation) for a set of anomalies as output. The model validation is obtained by comparing the results to other classical approaches and to the computed Bouguer, lineaments, and Euler maps obtained from measured gravity data. The depth of most of the deep faults and their orientation are in agreement with those obtained from other studies. The results achieved in this study establish the possibility of enhancing the quality of the analysis, interpretation, and modeling of gravity data collected on sparse grid of recording stations.\",\"PeriodicalId\":45602,\"journal\":{\"name\":\"International Journal of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/1298087\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/1298087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/1298087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 7

摘要

根据重力数据反演的地质结构的准确解释在很大程度上取决于记录的重力数据的覆盖范围。在这项工作中,使用Levenberg-Marquardt算法(LMA)实现了人工神经网络(Ann),以构建一个背景密度模型,用于预测喀麦隆北部及其周边地区的重力数据。该方法产生重力值(低误差值)的统计预测,两个输入(纬度、经度)的相关性、平均偏差误差和均方根误差分别为97.48%、0.10和0.89,三个输入(经度、纬度和高程)的相关性为97.08%、0.13和1.14,作为一组异常的输出。模型验证是通过将结果与其他经典方法以及从测量的重力数据中获得的计算布格图、线理图和欧拉图进行比较来获得的。大多数深断层的深度及其走向与其他研究结果一致。本研究的结果为提高在稀疏网格记录站上收集的重力数据的分析、解释和建模质量奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth and Lineament Maps Derived from North Cameroon Gravity Data Computed by Artificial Neural Network
Accurate interpretation of geological structures inverted from gravity data is highly dependent on the coverage of the recorded gravity data. In this work, Artificial Neural Networks (ANNs) are implemented using Levenberg-Marquardt algorithm (LMA) to construct a background density model for predicting gravity data across Northern Cameroon and its surroundings. This approach yields statistical predictions of gravity values (low values of errors) with 97.48%, 0.10, and 0.89, respectively, for correlation, Mean Bias Error, and Root Mean Square Error for two inputs (latitude, longitude) and 97.08%, 0.13, and 1.14 for three inputs (latitude, longitude, and elevation) for a set of anomalies as output. The model validation is obtained by comparing the results to other classical approaches and to the computed Bouguer, lineaments, and Euler maps obtained from measured gravity data. The depth of most of the deep faults and their orientation are in agreement with those obtained from other studies. The results achieved in this study establish the possibility of enhancing the quality of the analysis, interpretation, and modeling of gravity data collected on sparse grid of recording stations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Geophysics
International Journal of Geophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.50
自引率
0.00%
发文量
12
审稿时长
21 weeks
期刊介绍: International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信